Abstract
Drosophila simulans is hypothesized to have originated in continental East Africa or Madagascar. In this study, we investigated evolutionary forces operating on mitochondrial DNA (mtDNA) in populations of D. simulans from Zimbabwe, Malawi, Tanzania, and Kenya. Variation in mtDNA may be affected by positive selection, background selection, demographic history, and/or any maternally inherited factor such as the bacterial symbiont Wolbachia. In East Africa, the wRi and wMa Wolbachia strains associate with the siII or siIII mitochondrial haplogroups, respectively. To ask how polymorphism relates to Wolbachia infection status, we sequenced 1776 bp of mitochondrial DNA and 1029 bp of the X-linked per locus from 79 lines. The two southern populations were infected with wRi and exhibited significantly reduced mtDNA variation, while Wolbachia-uninfected siII flies from Tanzania and Kenya showed high levels of mtDNA polymorphism. These are the first known populations of D. simulans that do not exhibit reduced mtDNA variation. We observed no mitochondrial variation in the siIII haplogroup regardless of Wolbachia infection status, suggesting positive or background selection. These populations offer a unique opportunity to monitor evolutionary dynamics in ancestral populations that harbor multiple strains of Wolbachia.
Full Text
The Full Text of this article is available as a PDF (271.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andolfatto P. Contrasting patterns of X-linked and autosomal nucleotide variation in Drosophila melanogaster and Drosophila simulans. Mol Biol Evol. 2001 Mar;18(3):279–290. doi: 10.1093/oxfordjournals.molbev.a003804. [DOI] [PubMed] [Google Scholar]
- Andolfatto P., Przeworski M. Regions of lower crossing over harbor more rare variants in African populations of Drosophila melanogaster. Genetics. 2001 Jun;158(2):657–665. doi: 10.1093/genetics/158.2.657. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baba-Aïssa F., Solignac M., Dennebouy N., David J. R. Mitochondrial DNA variability in Drosophila simulans: quasi absence of polymorphism within each of the three cytoplasmic races. Heredity (Edinb) 1988 Dec;61(Pt 3):419–426. doi: 10.1038/hdy.1988.133. [DOI] [PubMed] [Google Scholar]
- Ballard J. W. Comparative genomics of mitochondrial DNA in Drosophila simulans. J Mol Evol. 2000 Jul;51(1):64–75. doi: 10.1007/s002390010067. [DOI] [PubMed] [Google Scholar]
- Ballard J. W. Comparative genomics of mitochondrial DNA in members of the Drosophila melanogaster subgroup. J Mol Evol. 2000 Jul;51(1):48–63. doi: 10.1007/s002390010066. [DOI] [PubMed] [Google Scholar]
- Ballard J. W., Hatzidakis J., Karr T. L., Kreitman M. Reduced variation in Drosophila simulans mitochondrial DNA. Genetics. 1996 Dec;144(4):1519–1528. doi: 10.1093/genetics/144.4.1519. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ballard J. W., Kreitman M. Unraveling selection in the mitochondrial genome of Drosophila. Genetics. 1994 Nov;138(3):757–772. doi: 10.1093/genetics/138.3.757. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Begun D. J., Aquadro C. F. African and North American populations of Drosophila melanogaster are very different at the DNA level. Nature. 1993 Oct 7;365(6446):548–550. doi: 10.1038/365548a0. [DOI] [PubMed] [Google Scholar]
- Charlesworth B. Background selection and patterns of genetic diversity in Drosophila melanogaster. Genet Res. 1996 Oct;68(2):131–149. doi: 10.1017/s0016672300034029. [DOI] [PubMed] [Google Scholar]
- Citri Y., Colot H. V., Jacquier A. C., Yu Q., Hall J. C., Baltimore D., Rosbash M. A family of unusually spliced biologically active transcripts encoded by a Drosophila clock gene. Nature. 1987 Mar 5;326(6108):42–47. doi: 10.1038/326042a0. [DOI] [PubMed] [Google Scholar]
- Clement M., Posada D., Crandall K. A. TCS: a computer program to estimate gene genealogies. Mol Ecol. 2000 Oct;9(10):1657–1659. doi: 10.1046/j.1365-294x.2000.01020.x. [DOI] [PubMed] [Google Scholar]
- Coyne J. A. Genetic studies of three sibling species of Drosophila with relationship to theories of speciation. Genet Res. 1985 Oct;46(2):169–192. doi: 10.1017/s0016672300022643. [DOI] [PubMed] [Google Scholar]
- De Stordeur E. Nonrandom partition of mitochondria in heteroplasmic Drosophila. Heredity (Edinb) 1997 Dec;79(Pt 6):615–623. doi: 10.1038/hdy.1997.207. [DOI] [PubMed] [Google Scholar]
- Dobson Stephen L., Marsland Eric J., Rattanadechakul Wanchai. Mutualistic Wolbachia infection in Aedes albopictus: accelerating cytoplasmic drive. Genetics. 2002 Mar;160(3):1087–1094. doi: 10.1093/genetics/160.3.1087. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fay J. C., Wu C. I. Hitchhiking under positive Darwinian selection. Genetics. 2000 Jul;155(3):1405–1413. doi: 10.1093/genetics/155.3.1405. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fry Adam J., Rand David M. Wolbachia interactions that determine Drosophila melanogaster survival. Evolution. 2002 Oct;56(10):1976–1981. doi: 10.1111/j.0014-3820.2002.tb00123.x. [DOI] [PubMed] [Google Scholar]
- Fu Y. X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics. 1997 Oct;147(2):915–925. doi: 10.1093/genetics/147.2.915. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hamblin M. T., Aquadro C. F. High nucleotide sequence variation in a region of low recombination in Drosophila simulans is consistent with the background selection model. Mol Biol Evol. 1996 Oct;13(8):1133–1140. doi: 10.1093/oxfordjournals.molbev.a025676. [DOI] [PubMed] [Google Scholar]
- Hamblin M. T., Veuille M. Population structure among African and derived populations of Drosophila simulans: evidence for ancient subdivision and recent admixture. Genetics. 1999 Sep;153(1):305–317. doi: 10.1093/genetics/153.1.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoffmann A. A., Hercus M., Dagher H. Population dynamics of the Wolbachia infection causing cytoplasmic incompatibility in Drosophila melanogaster. Genetics. 1998 Jan;148(1):221–231. doi: 10.1093/genetics/148.1.221. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoffmann A. A., Turelli M., Harshman L. G. Factors affecting the distribution of cytoplasmic incompatibility in Drosophila simulans. Genetics. 1990 Dec;126(4):933–948. doi: 10.1093/genetics/126.4.933. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoffmann A. A., Turelli M. Unidirectional incompatibility in Drosophila simulans: inheritance, geographic variation and fitness effects. Genetics. 1988 Jun;119(2):435–444. doi: 10.1093/genetics/119.2.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hudson R. R. Estimating the recombination parameter of a finite population model without selection. Genet Res. 1987 Dec;50(3):245–250. doi: 10.1017/s0016672300023776. [DOI] [PubMed] [Google Scholar]
- Hudson R. R., Kreitman M., Aguadé M. A test of neutral molecular evolution based on nucleotide data. Genetics. 1987 May;116(1):153–159. doi: 10.1093/genetics/116.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hutter C. M., Schug M. D., Aquadro C. F. Microsatellite variation in Drosophila melanogaster and Drosophila simulans: a reciprocal test of the ascertainment bias hypothesis. Mol Biol Evol. 1998 Dec;15(12):1620–1636. doi: 10.1093/oxfordjournals.molbev.a025890. [DOI] [PubMed] [Google Scholar]
- Irvin S. D., Wetterstrand K. A., Hutter C. M., Aquadro C. F. Genetic variation and differentiation at microsatellite loci in Drosophila simulans. Evidence for founder effects in new world populations. Genetics. 1998 Oct;150(2):777–790. doi: 10.1093/genetics/150.2.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
- James A. C., Ballard J. W. Expression of cytoplasmic incompatibility in Drosophila simulans and its impact on infection frequencies and distribution of Wolbachia pipientis. Evolution. 2000 Oct;54(5):1661–1672. doi: 10.1111/j.0014-3820.2000.tb00710.x. [DOI] [PubMed] [Google Scholar]
- James A. C., Dean M. D., McMahon M. E., Ballard J. W. O. Dynamics of double and single Wolbachia infections in Drosophila simulans from New Caledonia. Heredity (Edinb) 2002 Mar;88(3):182–189. doi: 10.1038/sj.hdy.6800025. [DOI] [PubMed] [Google Scholar]
- Jensen Mark A., Charlesworth Brian, Kreitman Martin. Patterns of genetic variation at a chromosome 4 locus of Drosophila melanogaster and D. simulans. Genetics. 2002 Feb;160(2):493–507. doi: 10.1093/genetics/160.2.493. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kim Y., Stephan W. Joint effects of genetic hitchhiking and background selection on neutral variation. Genetics. 2000 Jul;155(3):1415–1427. doi: 10.1093/genetics/155.3.1415. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kliman R. M., Andolfatto P., Coyne J. A., Depaulis F., Kreitman M., Berry A. J., McCarter J., Wakeley J., Hey J. The population genetics of the origin and divergence of the Drosophila simulans complex species. Genetics. 2000 Dec;156(4):1913–1931. doi: 10.1093/genetics/156.4.1913. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kliman R. M., Hey J. DNA sequence variation at the period locus within and among species of the Drosophila melanogaster complex. Genetics. 1993 Feb;133(2):375–387. doi: 10.1093/genetics/133.2.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kondo R., Matsuura E. T., Chigusa S. I. Further observation of paternal transmission of Drosophila mitochondrial DNA by PCR selective amplification method. Genet Res. 1992 Apr;59(2):81–84. doi: 10.1017/s0016672300030287. [DOI] [PubMed] [Google Scholar]
- Kondo R., Satta Y., Matsuura E. T., Ishiwa H., Takahata N., Chigusa S. I. Incomplete maternal transmission of mitochondrial DNA in Drosophila. Genetics. 1990 Nov;126(3):657–663. doi: 10.1093/genetics/126.3.657. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matsuura E. T., Fukuda H., Chigusa S. I. Mitochondrial DNA heteroplasmy maintained in natural populations of Drosophila simulans in Réunion. Genet Res. 1991 Apr;57(2):123–126. doi: 10.1017/s0016672300029189. [DOI] [PubMed] [Google Scholar]
- Merçot H., Poinsot D. . . . and discovered on Mount Kilimanjaro. Nature. 1998 Feb 26;391(6670):853–853. doi: 10.1038/36021. [DOI] [PubMed] [Google Scholar]
- O'Neill S. L., Karr T. L. Bidirectional incompatibility between conspecific populations of Drosophila simulans. Nature. 1990 Nov 8;348(6297):178–180. doi: 10.1038/348178a0. [DOI] [PubMed] [Google Scholar]
- Posada D, Crandall KA. Intraspecific gene genealogies: trees grafting into networks. Trends Ecol Evol. 2001 Jan 1;16(1):37–45. doi: 10.1016/s0169-5347(00)02026-7. [DOI] [PubMed] [Google Scholar]
- Rand D. M., Dorfsman M., Kann L. M. Neutral and non-neutral evolution of Drosophila mitochondrial DNA. Genetics. 1994 Nov;138(3):741–756. doi: 10.1093/genetics/138.3.741. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rozas J., Rozas R. DnaSP version 2.0: a novel software package for extensive molecular population genetics analysis. Comput Appl Biosci. 1997 Jun;13(3):307–311. [PubMed] [Google Scholar]
- Solignac M., Monnerot M., Mounolou J. C. Mitochondrial DNA evolution in the melanogaster species subgroup of Drosophila. J Mol Evol. 1986;23(1):31–40. doi: 10.1007/BF02100996. [DOI] [PubMed] [Google Scholar]
- Templeton A. R., Crandall K. A., Sing C. F. A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics. 1992 Oct;132(2):619–633. doi: 10.1093/genetics/132.2.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Turelli M., Hoffmann A. A. Cytoplasmic incompatibility in Drosophila simulans: dynamics and parameter estimates from natural populations. Genetics. 1995 Aug;140(4):1319–1338. doi: 10.1093/genetics/140.4.1319. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Turelli M., Hoffmann A. A., McKechnie S. W. Dynamics of cytoplasmic incompatibility and mtDNA variation in natural Drosophila simulans populations. Genetics. 1992 Nov;132(3):713–723. doi: 10.1093/genetics/132.3.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Turelli M., Hoffmann A. A. Microbe-induced cytoplasmic incompatibility as a mechanism for introducing transgenes into arthropod populations. Insect Mol Biol. 1999 May;8(2):243–255. doi: 10.1046/j.1365-2583.1999.820243.x. [DOI] [PubMed] [Google Scholar]
- Turelli M., Hoffmann A. A. Rapid spread of an inherited incompatibility factor in California Drosophila. Nature. 1991 Oct 3;353(6343):440–442. doi: 10.1038/353440a0. [DOI] [PubMed] [Google Scholar]
- Verrelli B. C., Eanes W. F. Extensive amino acid polymorphism at the pgm locus is consistent with adaptive protein evolution in Drosophila melanogaster. Genetics. 2000 Dec;156(4):1737–1752. doi: 10.1093/genetics/156.4.1737. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Watterson G. A. On the number of segregating sites in genetical models without recombination. Theor Popul Biol. 1975 Apr;7(2):256–276. doi: 10.1016/0040-5809(75)90020-9. [DOI] [PubMed] [Google Scholar]
- Zhou W., Rousset F., O'Neil S. Phylogeny and PCR-based classification of Wolbachia strains using wsp gene sequences. Proc Biol Sci. 1998 Mar 22;265(1395):509–515. doi: 10.1098/rspb.1998.0324. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Stordeur E., Solignac M., Monnerot M., Mounolou J. C. The generation of transplasmic Drosophila simulans by cytoplasmic injection: effects of segregation and selection on the perpetuation of mitochondrial DNA heteroplasmy. Mol Gen Genet. 1989 Dec;220(1):127–132. doi: 10.1007/BF00260866. [DOI] [PubMed] [Google Scholar]