Skip to main content
Genetics logoLink to Genetics
. 2003 Dec;165(4):2193–2212. doi: 10.1093/genetics/165.4.2193

Patterns of inbreeding depression and architecture of the load in subdivided populations.

Sylvain Glémin 1, Joëlle Ronfort 1, Thomas Bataillon 1
PMCID: PMC1462922  PMID: 14704197

Abstract

Inbreeding depression is a general phenomenon that is due mainly to recessive deleterious mutations, the so-called mutation load. It has been much studied theoretically. However, until very recently, population structure has not been taken into account, even though it can be an important factor in the evolution of populations. Population subdivision modifies the dynamics of deleterious mutations because the outcome of selection depends on processes both within populations (selection and drift) and between populations (migration). Here, we present a general model that permits us to gain insight into patterns of inbreeding depression, heterosis, and the load in subdivided populations. We show that they can be interpreted with reference to single-population theory, using an appropriate local effective population size that integrates the effects of drift, selection, and migration. We term this the "effective population size of selection" (NS(e)). For the infinite island model, for example, it is equal to NS(e) = N1 + m/hs, where N is the local population size, m the migration rate, and h and s the dominance and selection coefficients of deleterious mutation. Our results have implications for the estimation and interpretation of inbreeding depression in subdivided populations, especially regarding conservation issues. We also discuss the possible effects of migration and subdivision on the evolution of mating systems.

Full Text

The Full Text of this article is available as a PDF (243.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bataillon T. Estimation of spontaneous genome-wide mutation rate parameters: whither beneficial mutations? Heredity (Edinb) 2000 May;84(Pt 5):497–501. doi: 10.1046/j.1365-2540.2000.00727.x. [DOI] [PubMed] [Google Scholar]
  2. Bataillon T., Kirkpatrick M. Inbreeding depression due to mildly deleterious mutations in finite populations: size does matter. Genet Res. 2000 Feb;75(1):75–81. doi: 10.1017/s0016672399004048. [DOI] [PubMed] [Google Scholar]
  3. Caballero A., Hill W. G. Effects of partial inbreeding on fixation rates and variation of mutant genes. Genetics. 1992 Jun;131(2):493–507. doi: 10.1093/genetics/131.2.493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Charlesworth B., Charlesworth D. The genetic basis of inbreeding depression. Genet Res. 1999 Dec;74(3):329–340. doi: 10.1017/s0016672399004152. [DOI] [PubMed] [Google Scholar]
  5. Deng H. W. Characterization of deleterious mutations in outcrossing populations. Genetics. 1998 Oct;150(2):945–956. doi: 10.1093/genetics/150.2.945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Deng H. W., Fu Y. X. On the three methods for estimating deleterious genomic mutation parameters. Genet Res. 1998 Jun;71(3):223–236. doi: 10.1017/s0016672398003255. [DOI] [PubMed] [Google Scholar]
  7. Deng H. W., Lynch M. Estimation of deleterious-mutation parameters in natural populations. Genetics. 1996 Sep;144(1):349–360. doi: 10.1093/genetics/144.1.349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ebert Dieter, Haag Christoph, Kirkpatrick Mark, Riek Myriam, Hottinger Jurgen W., Pajunen V. Ilmari. A selective advantage to immigrant genes in a Daphnia metapopulation. Science. 2002 Jan 18;295(5554):485–488. doi: 10.1126/science.1067485. [DOI] [PubMed] [Google Scholar]
  9. Haag Christoph R., Hottinger Jürgen W., Riek Myriam, Ebert Dieter. Strong inbreeding depression in a Daphnia metapopulation. Evolution. 2002 Mar;56(3):518–526. [PubMed] [Google Scholar]
  10. Higgins K., Lynch M. Metapopulation extinction caused by mutation accumulation. Proc Natl Acad Sci U S A. 2001 Feb 20;98(5):2928–2933. doi: 10.1073/pnas.031358898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hill W. G., Robertson A. The effect of linkage on limits to artificial selection. Genet Res. 1966 Dec;8(3):269–294. [PubMed] [Google Scholar]
  12. Ingvarsson P. K., Whitlock M. C. Heterosis increases the effective migration rate. Proc Biol Sci. 2000 Jul 7;267(1450):1321–1326. doi: 10.1098/rspb.2000.1145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. KIMURA M., MARUYAMA T., CROW J. F. THE MUTATION LOAD IN SMALL POPULATIONS. Genetics. 1963 Oct;48:1303–1312. doi: 10.1093/genetics/48.10.1303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Keightley P. D. The distribution of mutation effects on viability in Drosophila melanogaster. Genetics. 1994 Dec;138(4):1315–1322. doi: 10.1093/genetics/138.4.1315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Morgan M. T. Genome-wide deleterious mutation favors dispersal and species integrity. Heredity (Edinb) 2002 Oct;89(4):253–257. doi: 10.1038/sj.hdy.6800143. [DOI] [PubMed] [Google Scholar]
  16. Mukai T., Chigusa S. I., Mettler L. E., Crow J. F. Mutation rate and dominance of genes affecting viability in Drosophila melanogaster. Genetics. 1972 Oct;72(2):335–355. doi: 10.1093/genetics/72.2.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Nordborg M., Charlesworth B., Charlesworth D. The effect of recombination on background selection. Genet Res. 1996 Apr;67(2):159–174. doi: 10.1017/s0016672300033619. [DOI] [PubMed] [Google Scholar]
  18. Ohta T., Kimura M. Linkage disequilibrium at steady state determined by random genetic drift and recurrent mutation. Genetics. 1969 Sep;63(1):229–238. doi: 10.1093/genetics/63.1.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Petry D. The effect on neutral gene flow of selection at a linked locus. Theor Popul Biol. 1983 Jun;23(3):300–313. doi: 10.1016/0040-5809(83)90020-5. [DOI] [PubMed] [Google Scholar]
  20. Robertson A. The reduction of fitness from genetic drift at heterotic loci in small populations. Genet Res. 1970 Apr;15(2):257–259. doi: 10.1017/s0016672300001580. [DOI] [PubMed] [Google Scholar]
  21. Sheridan P. M., Karowe D. N. Inbreeding, outbreeding, and heterosis in the yellow pitcher plant, Sarracenia flava (Sarraceniaceae), in Virginia. Am J Bot. 2000 Nov;87(11):1628–1633. [PubMed] [Google Scholar]
  22. Theodorou Konstantinos, Couvet Denis. Inbreeding depression and heterosis in a subdivided population: influence of the mating system. Genet Res. 2002 Oct;80(2):107–116. doi: 10.1017/s0016672302005785. [DOI] [PubMed] [Google Scholar]
  23. Whitlock M. C., Ingvarsson P. K., Hatfield T. Local drift load and the heterosis of interconnected populations. Heredity (Edinb) 2000 Apr;84(Pt 4):452–457. doi: 10.1046/j.1365-2540.2000.00693.x. [DOI] [PubMed] [Google Scholar]
  24. Whitlock Michael C. Selection, load and inbreeding depression in a large metapopulation. Genetics. 2002 Mar;160(3):1191–1202. doi: 10.1093/genetics/160.3.1191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. van Oosterhout C., Zijlstra W. G., van Heuven M. K., Brakefield P. M. Inbreeding depression and genetic load in laboratory metapopulations of the butterfly Bicyclus anynana. Evolution. 2000 Feb;54(1):218–225. doi: 10.1111/j.0014-3820.2000.tb00022.x. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES