Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1996 Dec 1;24(23):4653–4659. doi: 10.1093/nar/24.23.4653

The sensitivity of human fibroblasts to N-acetoxy-2-acetylaminofluorene is determined by the extent of transcription-coupled repair, and/or their capability to counteract RNA synthesis inhibition.

M F van Oosterwijk 1, R Filon 1, W H Kalle 1, L H Mullenders 1, A A van Zeeland 1
PMCID: PMC146299  PMID: 8972850

Abstract

Nucleotide excision repair (NER) mechanism is the major pathway responsible for the removal of a large variety of bulky lesions from the genome. Two different NER subpathways have been identified, i.e. the transcription-coupled and the global genome repair pathways. For DNA-damage induced by ultraviolet light both transcription-coupled repair and global genome repair are essential to confer resistance to cytotoxic effects. To gain further insight into the contribution of NER subpathways in the repair of bulky lesions and in their prevention of biological effects we measured the rate of repair of dG-C8-AF in active and inactive genes in normal human cells, XP-C cells (only transcription-coupled repair) and XP-A cells (completely NER-deficient) exposed to NA-AAF. XP-C cells are only slightly more sensitive to NA-AAF than normal cells and, like normal cells, they are able to recover RNA synthesis repressed by the treatment. In contrast, XP-A cells are sensitive to NA-AAF and unable to recover from RNA synthesis inhibition. Repair of dG-C8-AF in the active ADA gene proceeds in a biphasic way and without strand specificity, with a subclass of lesions quickly repaired during the first 8 h after treatment. Repair in the inactive 754 gene occurs more slowly than in the ADA gene. In XP-C cells, repair of dG-C8-AF in the ADA gene is confined to the transcribed strand and occurs at about half the rate of repair seen in normal cells. Repair in the inactive 754 gene in XP-C cells is virtually absent. Consistent with these results we found that repair replication in XP-C is drastically reduced when compared with normal cells and abolished by alpha-amanitin indicating that the repair in XP-C cells is mediated by transcription-coupled repair only. Our data suggest that dG-C8-AF is a target for transcription-coupled repair and that this repair pathway is the main pathway or recovery of RNA synthesis inhibition conferring resistance to cytotoxic effects of NA-AAF. In spite of this, repair of dG-C8-AF in active genes in normal cells by transcription-coupled repair and global genome repair is not additive, but dominated by global genome repair. This indicates that the subset of lesions which are capable of stalling RNA polymerase II, and are, therefore, a substrate for TCR, are also the lesions which are very efficiently recognized by the global genome repair system.

Full Text

The Full Text of this article is available as a PDF (186.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amacher D. E., Lieberman M. W. Removal of acetylaminofluorene from the DNA of control and repair-deficient human fibroblasts. Biochem Biophys Res Commun. 1977 Jan 10;74(1):285–290. doi: 10.1016/0006-291x(77)91406-1. [DOI] [PubMed] [Google Scholar]
  2. Bohr V. A., Smith C. A., Okumoto D. S., Hanawalt P. C. DNA repair in an active gene: removal of pyrimidine dimers from the DHFR gene of CHO cells is much more efficient than in the genome overall. Cell. 1985 Feb;40(2):359–369. doi: 10.1016/0092-8674(85)90150-3. [DOI] [PubMed] [Google Scholar]
  3. Brown A. J., Fickel T. H., Cleaver J. E., Lohman P. H., Wade M. H., Waters R. Overlapping pathways for repair of damage from ultraviolet light and chemical carcinogens in human fibroblasts. Cancer Res. 1979 Jul;39(7 Pt 1):2522–2527. [PubMed] [Google Scholar]
  4. Carreau M., Hunting D. Transcription-dependent and independent DNA excision repair pathways in human cells. Mutat Res. 1992 Jun;274(1):57–64. doi: 10.1016/0921-8777(92)90043-3. [DOI] [PubMed] [Google Scholar]
  5. Chen R. H., Maher V. M., Brouwer J., van de Putte P., McCormick J. J. Preferential repair and strand-specific repair of benzo[a]pyrene diol epoxide adducts in the HPRT gene of diploid human fibroblasts. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5413–5417. doi: 10.1073/pnas.89.12.5413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Christians F. C., Hanawalt P. C. Inhibition of transcription and strand-specific DNA repair by alpha-amanitin in Chinese hamster ovary cells. Mutat Res. 1992 Aug;274(2):93–101. doi: 10.1016/0921-8777(92)90056-9. [DOI] [PubMed] [Google Scholar]
  7. Donahue B. A., Fuchs R. P., Reines D., Hanawalt P. C. Effects of aminofluorene and acetylaminofluorene DNA adducts on transcriptional elongation by RNA polymerase II. J Biol Chem. 1996 May 3;271(18):10588–10594. doi: 10.1074/jbc.271.18.10588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Evans F. E., Miller D. W., Beland F. A. Sensitivity of the conformation of deoxyguanosine to binding at the C-8 position by N-acetylated and unacetylated 2-aminofluorene. Carcinogenesis. 1980;1(11):955–959. doi: 10.1093/carcin/1.11.955. [DOI] [PubMed] [Google Scholar]
  9. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  10. Fischer E., Keijzer W., Thielmann H. W., Popanda O., Bohnert E., Edler L., Jung E. G., Bootsma D. A ninth complementation group in xeroderma pigmentosum, XP I. Mutat Res. 1985 May;145(3):217–225. doi: 10.1016/0167-8817(85)90030-6. [DOI] [PubMed] [Google Scholar]
  11. Kalle W. H., Hazekamp-van Dokkum A. M., Lohman P. H., Natarajan A. T., van Zeeland A. A., Mullenders L. H. The use of streptavidin-coated magnetic beads and biotinylated antibodies to investigate induction and repair of DNA damage: analysis of repair patches in specific sequences of uv-irradiated human fibroblasts. Anal Biochem. 1993 Feb 1;208(2):228–236. doi: 10.1006/abio.1993.1037. [DOI] [PubMed] [Google Scholar]
  12. Kantor G. J., Barsalou L. S., Hanawalt P. C. Selective repair of specific chromatin domains in UV-irradiated cells from xeroderma pigmentosum complementation group C. Mutat Res. 1990 May;235(3):171–180. doi: 10.1016/0921-8777(90)90071-c. [DOI] [PubMed] [Google Scholar]
  13. Kantor G. J., Elking C. F. Biological significance of domain-oriented DNA repair in xeroderma pigmentosum cells. Cancer Res. 1988 Feb 15;48(4):844–849. [PubMed] [Google Scholar]
  14. Lattier D. L., States J. C., Hutton J. J., Wiginton D. A. Cell type-specific transcriptional regulation of the human adenosine deaminase gene. Nucleic Acids Res. 1989 Feb 11;17(3):1061–1076. doi: 10.1093/nar/17.3.1061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Leadon S. A., Lawrence D. A. Preferential repair of DNA damage on the transcribed strand of the human metallothionein genes requires RNA polymerase II. Mutat Res. 1991 Jul;255(1):67–78. doi: 10.1016/0921-8777(91)90019-l. [DOI] [PubMed] [Google Scholar]
  16. Leng M., Ptak M., Rio P. Conformation of acetylaminofluorene and aminofluorene modified guanosine and guanosine derivatives. Biochem Biophys Res Commun. 1980 Oct 16;96(3):1095–1102. doi: 10.1016/0006-291x(80)90064-9. [DOI] [PubMed] [Google Scholar]
  17. Mayne L. V., Lehmann A. R. Failure of RNA synthesis to recover after UV irradiation: an early defect in cells from individuals with Cockayne's syndrome and xeroderma pigmentosum. Cancer Res. 1982 Apr;42(4):1473–1478. [PubMed] [Google Scholar]
  18. McGregor W. G., Mah M. C., Chen R. W., Maher V. M., McCormick J. J. Lack of correlation between degree of interference with transcription and rate of strand specific repair in the HPRT gene of diploid human fibroblasts. J Biol Chem. 1995 Nov 10;270(45):27222–27227. doi: 10.1074/jbc.270.45.27222. [DOI] [PubMed] [Google Scholar]
  19. Mellon I., Spivak G., Hanawalt P. C. Selective removal of transcription-blocking DNA damage from the transcribed strand of the mammalian DHFR gene. Cell. 1987 Oct 23;51(2):241–249. doi: 10.1016/0092-8674(87)90151-6. [DOI] [PubMed] [Google Scholar]
  20. Pfeifer G. P., Drouin R., Holmquist G. P. Detection of DNA adducts at the DNA sequence level by ligation-mediated PCR. Mutat Res. 1993 Jul;288(1):39–46. doi: 10.1016/0027-5107(93)90206-u. [DOI] [PubMed] [Google Scholar]
  21. Regan J. D., Setlow R. B. Two forms of repair in the DNA of human cells damaged by chemical carcinogens and mutagens. Cancer Res. 1974 Dec;34(12):3318–3325. [PubMed] [Google Scholar]
  22. Ruven H. J., Seelen C. M., Lohman P. H., Mullenders L. H., van Zeeland A. A. Efficient synthesis of 32P-labeled single-stranded DNA probes using linear PCR; application of the method for analysis of strand-specific DNA repair. Mutat Res. 1994 Sep;315(2):189–195. doi: 10.1016/0921-8777(94)90018-3. [DOI] [PubMed] [Google Scholar]
  23. Tang M. S., Bohr V. A., Zhang X. S., Pierce J., Hanawalt P. C. Quantification of aminofluorene adduct formation and repair in defined DNA sequences in mammalian cells using the UVRABC nuclease. J Biol Chem. 1989 Aug 25;264(24):14455–14462. [PubMed] [Google Scholar]
  24. Venema J., Bartosová Z., Natarajan A. T., van Zeeland A. A., Mullenders L. H. Transcription affects the rate but not the extent of repair of cyclobutane pyrimidine dimers in the human adenosine deaminase gene. J Biol Chem. 1992 May 5;267(13):8852–8856. [PubMed] [Google Scholar]
  25. Venema J., Mullenders L. H., Natarajan A. T., van Zeeland A. A., Mayne L. V. The genetic defect in Cockayne syndrome is associated with a defect in repair of UV-induced DNA damage in transcriptionally active DNA. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4707–4711. doi: 10.1073/pnas.87.12.4707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Venema J., van Hoffen A., Karcagi V., Natarajan A. T., van Zeeland A. A., Mullenders L. H. Xeroderma pigmentosum complementation group C cells remove pyrimidine dimers selectively from the transcribed strand of active genes. Mol Cell Biol. 1991 Aug;11(8):4128–4134. doi: 10.1128/mcb.11.8.4128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Venema J., van Hoffen A., Natarajan A. T., van Zeeland A. A., Mullenders L. H. The residual repair capacity of xeroderma pigmentosum complementation group C fibroblasts is highly specific for transcriptionally active DNA. Nucleic Acids Res. 1990 Feb 11;18(3):443–448. doi: 10.1093/nar/18.3.443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. van Hoffen A., Venema J., Meschini R., van Zeeland A. A., Mullenders L. H. Transcription-coupled repair removes both cyclobutane pyrimidine dimers and 6-4 photoproducts with equal efficiency and in a sequential way from transcribed DNA in xeroderma pigmentosum group C fibroblasts. EMBO J. 1995 Jan 16;14(2):360–367. doi: 10.1002/j.1460-2075.1995.tb07010.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. van Houte L. P., Bokma J. T., Lutgerink J. T., Westra J. G., Retèl J., van Grondelle R., Blok J. An optical study of the conformation of the aminofluorene-DNA complex. Carcinogenesis. 1987 Jun;8(6):759–766. doi: 10.1093/carcin/8.6.759. [DOI] [PubMed] [Google Scholar]
  30. van Oosterwijk M. F., Versteeg A., Filon R., van Zeeland A. A., Mullenders L. H. The sensitivity of Cockayne's syndrome cells to DNA-damaging agents is not due to defective transcription-coupled repair of active genes. Mol Cell Biol. 1996 Aug;16(8):4436–4444. doi: 10.1128/mcb.16.8.4436. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES