Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1996 Dec 1;24(23):4693–4699. doi: 10.1093/nar/24.23.4693

A shuttle system for transfer of YACs between yeast and mammalian cells.

K Simpson 1, C Huxley 1
PMCID: PMC146308  PMID: 8972855

Abstract

The development of a system for shuttling DNA cloned as yeast artificial chromosomes (YACs) between yeast and mammalian cells requires that the DNA is maintained as extrachromosomal elements in both cell types. We have recently shown that circular YACs carrying the Epstein-Barr virus origin of plasmid replication (oriP) are maintained as stable, episomal elements in a human kidney cell line constitutively expressing the viral transactivator protein EBNA-1. Here, we demonstrate that a 90-kb episomal YAC can be isolated intact from human cells by a simple alkaline lysis procedure and shuttled back into Saccharomyces cerevisiae by spheroplast transformation. In addition, we demonstrate that the 90-kb YAC can be isolated intact from yeast cells. The ability to shuttle large, intact fragments of DNA between yeast and human cells should provide a powerful tool in the manipulation and analysis of functional regions of mammalian DNA.

Full Text

The Full Text of this article is available as a PDF (179.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersson-Anvret M., Lindahl T. Integrated viral DNA sequences in Epstein-Barr virus-converted human lymphoma lines. J Virol. 1978 Mar;25(3):710–718. doi: 10.1128/jvi.25.3.710-718.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Banerjee S., Livanos E., Vos J. M. Therapeutic gene delivery in human B-lymphoblastoid cells by engineered non-transforming infectious Epstein-Barr virus. Nat Med. 1995 Dec;1(12):1303–1308. doi: 10.1038/nm1295-1303. [DOI] [PubMed] [Google Scholar]
  3. Belt P. B., Groeneveld H., Teubel W. J., van de Putte P., Backendorf C. Construction and properties of an Epstein-Barr-virus-derived cDNA expression vector for human cells. Gene. 1989 Dec 14;84(2):407–417. doi: 10.1016/0378-1119(89)90515-5. [DOI] [PubMed] [Google Scholar]
  4. Burgers P. M., Percival K. J. Transformation of yeast spheroplasts without cell fusion. Anal Biochem. 1987 Jun;163(2):391–397. doi: 10.1016/0003-2697(87)90240-5. [DOI] [PubMed] [Google Scholar]
  5. Burke D. T., Carle G. F., Olson M. V. Cloning of large segments of exogenous DNA into yeast by means of artificial chromosome vectors. Science. 1987 May 15;236(4803):806–812. doi: 10.1126/science.3033825. [DOI] [PubMed] [Google Scholar]
  6. Caplen N. J., Alton E. W., Middleton P. G., Dorin J. R., Stevenson B. J., Gao X., Durham S. R., Jeffery P. K., Hodson M. E., Coutelle C. Liposome-mediated CFTR gene transfer to the nasal epithelium of patients with cystic fibrosis. Nat Med. 1995 Jan;1(1):39–46. doi: 10.1038/nm0195-39. [DOI] [PubMed] [Google Scholar]
  7. Carroll S. M., Gaudray P., De Rose M. L., Emery J. F., Meinkoth J. L., Nakkim E., Subler M., Von Hoff D. D., Wahl G. M. Characterization of an episome produced in hamster cells that amplify a transfected CAD gene at high frequency: functional evidence for a mammalian replication origin. Mol Cell Biol. 1987 May;7(5):1740–1750. doi: 10.1128/mcb.7.5.1740. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Connelly C., McCormick M. K., Shero J., Hieter P. Polyamines eliminate an extreme size bias against transformation of large yeast artificial chromosome DNA. Genomics. 1991 May;10(1):10–16. doi: 10.1016/0888-7543(91)90477-v. [DOI] [PubMed] [Google Scholar]
  9. Das Gupta R., Morrow B., Marondel I., Parimoo S., Goei V. L., Gruen J., Weissman S., Skoultchi A., Kucherlapati R. An integrated approach for identifying and mapping human genes. Proc Natl Acad Sci U S A. 1993 May 15;90(10):4364–4368. doi: 10.1073/pnas.90.10.4364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Devenish R. J., Newlon C. S. Isolation and characterization of yeast ring chromosome III by a method applicable to other circular DNAs. Gene. 1982 Jun;18(3):277–288. doi: 10.1016/0378-1119(82)90166-4. [DOI] [PubMed] [Google Scholar]
  11. Duff K., McGuigan A., Huxley C., Schulz F., Hardy J. Insertion of a pathogenic mutation into a yeast artificial chromosome containing the human amyloid precursor protein gene. Gene Ther. 1994 Jan;1(1):70–75. [PubMed] [Google Scholar]
  12. Duyk G. M., Kim S. W., Myers R. M., Cox D. R. Exon trapping: a genetic screen to identify candidate transcribed sequences in cloned mammalian genomic DNA. Proc Natl Acad Sci U S A. 1990 Nov;87(22):8995–8999. doi: 10.1073/pnas.87.22.8995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Featherstone T., Huxley C. Extrachromosomal maintenance and amplification of yeast artificial chromosome DNA in mouse cells. Genomics. 1993 Aug;17(2):267–278. doi: 10.1006/geno.1993.1321. [DOI] [PubMed] [Google Scholar]
  14. Frazer K. A., Narla G., Zhang J. L., Rubin E. M. The apolipoprotein(a) gene is regulated by sex hormones and acute-phase inducers in YAC transgenic mice. Nat Genet. 1995 Apr;9(4):424–431. doi: 10.1038/ng0495-424. [DOI] [PubMed] [Google Scholar]
  15. Gahn T. A., Schildkraut C. L. The Epstein-Barr virus origin of plasmid replication, oriP, contains both the initiation and termination sites of DNA replication. Cell. 1989 Aug 11;58(3):527–535. doi: 10.1016/0092-8674(89)90433-9. [DOI] [PubMed] [Google Scholar]
  16. Gao X., Huang L. Cationic liposome-mediated gene transfer. Gene Ther. 1995 Dec;2(10):710–722. [PubMed] [Google Scholar]
  17. Gnirke A., Barnes T. S., Patterson D., Schild D., Featherstone T., Olson M. V. Cloning and in vivo expression of the human GART gene using yeast artificial chromosomes. EMBO J. 1991 Jul;10(7):1629–1634. doi: 10.1002/j.1460-2075.1991.tb07685.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Griffin B. E., Björck E., Bjursell G., Lindahl T. Sequence complexity of circular Epstein-Bar virus DNA in transformed cells. J Virol. 1981 Oct;40(1):11–19. doi: 10.1128/jvi.40.1.11-19.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Harris A., Young B. D., Griffin B. E. Random association of Epstein-Barr virus genomes with host cell metaphase chromosomes in Burkitt's lymphoma-derived cell lines. J Virol. 1985 Oct;56(1):328–332. doi: 10.1128/jvi.56.1.328-332.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hermann H., Häcker U., Bandlow W., Magdolen V. pYLZ vectors: Saccharomyces cerevisiae/Escherichia coli shuttle plasmids to analyze yeast promoters. Gene. 1992 Sep 21;119(1):137–141. doi: 10.1016/0378-1119(92)90079-5. [DOI] [PubMed] [Google Scholar]
  21. Hirt B. Selective extraction of polyoma DNA from infected mouse cell cultures. J Mol Biol. 1967 Jun 14;26(2):365–369. doi: 10.1016/0022-2836(67)90307-5. [DOI] [PubMed] [Google Scholar]
  22. Huxley C., Gnirke A. Transfer of yeast artificial chromosomes from yeast to mammalian cells. Bioessays. 1991 Oct;13(10):545–550. doi: 10.1002/bies.950131009. [DOI] [PubMed] [Google Scholar]
  23. Huxley C. Transfer of YACs to mammalian cells and transgenic mice. Genet Eng (N Y) 1994;16:65–91. [PubMed] [Google Scholar]
  24. Jha B., Ahne F., Eckardt-Schupp F. The use of a double-marker shuttle vector to study DNA double-strand break repair in wild-type and radiation-sensitive mutants of the yeast Saccharomyces cerevisiae. Curr Genet. 1993 May-Jun;23(5-6):402–407. doi: 10.1007/BF00312626. [DOI] [PubMed] [Google Scholar]
  25. Kinchington D., Griffin B. E. Size heterogeneity of EBV and mitochondrial DNAs in Burkitt's lymphoma lines. Nucleic Acids Res. 1987 Dec 23;15(24):10345–10354. doi: 10.1093/nar/15.24.10345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Krysan P. J., Haase S. B., Calos M. P. Isolation of human sequences that replicate autonomously in human cells. Mol Cell Biol. 1989 Mar;9(3):1026–1033. doi: 10.1128/mcb.9.3.1026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Lamb B. T., Sisodia S. S., Lawler A. M., Slunt H. H., Kitt C. A., Kearns W. G., Pearson P. L., Price D. L., Gearhart J. D. Introduction and expression of the 400 kilobase amyloid precursor protein gene in transgenic mice [corrected]. Nat Genet. 1993 Sep;5(1):22–30. doi: 10.1038/ng0993-22. [DOI] [PubMed] [Google Scholar]
  28. Lewis B. C., Shah N. P., Braun B. S., Denny C. T. Creation of a yeast artificial chromosome fragmentation vector based on lysine-2. Genet Anal Tech Appl. 1992 Jun;9(3):86–90. doi: 10.1016/1050-3862(92)90003-n. [DOI] [PubMed] [Google Scholar]
  29. Lindahl T., Adams A., Bjursell G., Bornkamm G. W., Kaschka-Dierich C., Jehn U. Covalently closed circular duplex DNA of Epstein-Barr virus in a human lymphoid cell line. J Mol Biol. 1976 Apr 15;102(3):511–530. doi: 10.1016/0022-2836(76)90331-4. [DOI] [PubMed] [Google Scholar]
  30. Lupton S., Levine A. J. Mapping genetic elements of Epstein-Barr virus that facilitate extrachromosomal persistence of Epstein-Barr virus-derived plasmids in human cells. Mol Cell Biol. 1985 Oct;5(10):2533–2542. doi: 10.1128/mcb.5.10.2533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Margolskee R. F., Kavathas P., Berg P. Epstein-Barr virus shuttle vector for stable episomal replication of cDNA expression libraries in human cells. Mol Cell Biol. 1988 Jul;8(7):2837–2847. doi: 10.1128/mcb.8.7.2837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Nabel G. J., Nabel E. G., Yang Z. Y., Fox B. A., Plautz G. E., Gao X., Huang L., Shu S., Gordon D., Chang A. E. Direct gene transfer with DNA-liposome complexes in melanoma: expression, biologic activity, and lack of toxicity in humans. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):11307–11311. doi: 10.1073/pnas.90.23.11307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Nonoyama M., Pagano J. S. Separation of Epstein-Barr virus DNA from large chromosomal DNA in non-virus-producing cells. Nat New Biol. 1972 Aug 9;238(84):169–171. doi: 10.1038/newbio238169a0. [DOI] [PubMed] [Google Scholar]
  34. Parent S. A., Fenimore C. M., Bostian K. A. Vector systems for the expression, analysis and cloning of DNA sequences in S. cerevisiae. Yeast. 1985 Dec;1(2):83–138. doi: 10.1002/yea.320010202. [DOI] [PubMed] [Google Scholar]
  35. Pavan W. J., Hieter P., Reeves R. H. Generation of deletion derivatives by targeted transformation of human-derived yeast artificial chromosomes. Proc Natl Acad Sci U S A. 1990 Feb;87(4):1300–1304. doi: 10.1073/pnas.87.4.1300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Pavan W. J., Hieter P., Reeves R. H. Modification and transfer into an embryonal carcinoma cell line of a 360-kilobase human-derived yeast artificial chromosome. Mol Cell Biol. 1990 Aug;10(8):4163–4169. doi: 10.1128/mcb.10.8.4163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Pavan W. J., Hieter P., Sears D., Burkhoff A., Reeves R. H. High-efficiency yeast artificial chromosome fragmentation vectors. Gene. 1991 Sep 30;106(1):125–127. doi: 10.1016/0378-1119(91)90576-w. [DOI] [PubMed] [Google Scholar]
  38. Perou C. M., Justice M. J., Pryor R. J., Kaplan J. Complementation of the beige mutation in cultured cells by episomally replicating murine yeast artificial chromosomes. Proc Natl Acad Sci U S A. 1996 Jun 11;93(12):5905–5909. doi: 10.1073/pnas.93.12.5905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Peterson C., Legerski R. High-frequency transformation of human repair-deficient cell lines by an Epstein-Barr virus-based cDNA expression vector. Gene. 1991 Nov 15;107(2):279–284. doi: 10.1016/0378-1119(91)90328-9. [DOI] [PubMed] [Google Scholar]
  40. Rawlins D. R., Milman G., Hayward S. D., Hayward G. S. Sequence-specific DNA binding of the Epstein-Barr virus nuclear antigen (EBNA-1) to clustered sites in the plasmid maintenance region. Cell. 1985 Oct;42(3):859–868. doi: 10.1016/0092-8674(85)90282-x. [DOI] [PubMed] [Google Scholar]
  41. Reisman D., Sugden B. trans activation of an Epstein-Barr viral transcriptional enhancer by the Epstein-Barr viral nuclear antigen 1. Mol Cell Biol. 1986 Nov;6(11):3838–3846. doi: 10.1128/mcb.6.11.3838. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Reisman D., Yates J., Sugden B. A putative origin of replication of plasmids derived from Epstein-Barr virus is composed of two cis-acting components. Mol Cell Biol. 1985 Aug;5(8):1822–1832. doi: 10.1128/mcb.5.8.1822. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Riley J. H., Morten J. E., Anand R. Targeted integration of neomycin into yeast artificial chromosomes (YACs) for transfection into mammalian cells. Nucleic Acids Res. 1992 Jun 25;20(12):2971–2976. doi: 10.1093/nar/20.12.2971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Schedl A., Montoliu L., Kelsey G., Schütz G. A yeast artificial chromosome covering the tyrosinase gene confers copy number-dependent expression in transgenic mice. Nature. 1993 Mar 18;362(6417):258–261. doi: 10.1038/362258a0. [DOI] [PubMed] [Google Scholar]
  45. Schwelberger H. G., Kohlwein S. D., Paltauf F. Molecular cloning, primary structure and disruption of the structural gene of aldolase from Saccharomyces cerevisiae. Eur J Biochem. 1989 Mar 15;180(2):301–308. doi: 10.1111/j.1432-1033.1989.tb14648.x. [DOI] [PubMed] [Google Scholar]
  46. Simpson K., McGuigan A., Huxley C. Stable episomal maintenance of yeast artificial chromosomes in human cells. Mol Cell Biol. 1996 Sep;16(9):5117–5126. doi: 10.1128/mcb.16.9.5117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Soh J., Donnelly R. J., Mariano T. M., Cook J. R., Schwartz B., Pestka S. Identification of a yeast artificial chromosome clone encoding an accessory factor for the human interferon gamma receptor: evidence for multiple accessory factors. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8737–8741. doi: 10.1073/pnas.90.18.8737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Southern E. M., Anand R., Brown W. R., Fletcher D. S. A model for the separation of large DNA molecules by crossed field gel electrophoresis. Nucleic Acids Res. 1987 Aug 11;15(15):5925–5943. doi: 10.1093/nar/15.15.5925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Srivastava A. K., Schlessinger D. Vectors for inserting selectable markers in vector arms and human DNA inserts of yeast artificial chromosomes (YACs). Gene. 1991 Jul 15;103(1):53–59. doi: 10.1016/0378-1119(91)90390-w. [DOI] [PubMed] [Google Scholar]
  50. Strauss W. M., Jaenisch R. Molecular complementation of a collagen mutation in mammalian cells using yeast artificial chromosomes. EMBO J. 1992 Feb;11(2):417–422. doi: 10.1002/j.1460-2075.1992.tb05070.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Sugden B., Marsh K., Yates J. A vector that replicates as a plasmid and can be efficiently selected in B-lymphoblasts transformed by Epstein-Barr virus. Mol Cell Biol. 1985 Feb;5(2):410–413. doi: 10.1128/mcb.5.2.410. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Sun T. Q., Fenstermacher D. A., Vos J. M. Human artificial episomal chromosomes for cloning large DNA fragments in human cells. Nat Genet. 1994 Sep;8(1):33–41. doi: 10.1038/ng0994-33. [DOI] [PubMed] [Google Scholar]
  53. Wada M., Ihara Y., Tatsuka M., Mitsui H., Kohno K., Kuwano M., Schlessinger D. HPRT yeast artificial chromosome transfer into human cells by four methods and an involvement of homologous recombination. Biochem Biophys Res Commun. 1994 May 16;200(3):1693–1700. doi: 10.1006/bbrc.1994.1647. [DOI] [PubMed] [Google Scholar]
  54. Winston F., Chumley F., Fink G. R. Eviction and transplacement of mutant genes in yeast. Methods Enzymol. 1983;101:211–228. doi: 10.1016/0076-6879(83)01016-2. [DOI] [PubMed] [Google Scholar]
  55. Yates J. L., Warren N., Sugden B. Stable replication of plasmids derived from Epstein-Barr virus in various mammalian cells. 1985 Feb 28-Mar 6Nature. 313(6005):812–815. doi: 10.1038/313812a0. [DOI] [PubMed] [Google Scholar]
  56. Yates J., Warren N., Reisman D., Sugden B. A cis-acting element from the Epstein-Barr viral genome that permits stable replication of recombinant plasmids in latently infected cells. Proc Natl Acad Sci U S A. 1984 Jun;81(12):3806–3810. doi: 10.1073/pnas.81.12.3806. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Young J. M., Cheadle C., Foulke J. S., Jr, Drohan W. N., Sarver N. Utilization of an Epstein-Barr virus replicon as a eukaryotic expression vector. Gene. 1988;62(2):171–185. doi: 10.1016/0378-1119(88)90556-2. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES