Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1996 Dec 1;24(23):4649–4652. doi: 10.1093/nar/24.23.4649

The nuclear matrix protein p255 is a highly phosphorylated form of RNA polymerase II largest subunit which associates with spliceosomes.

M Vincent 1, P Lauriault 1, M F Dubois 1, S Lavoie 1, O Bensaude 1, B Chabot 1
PMCID: PMC146315  PMID: 8972849

Abstract

The monoclonal antibody CC-3 recognizes a phosphodependent epitope on a 255 kDa nuclear matrix protein (p255) recently shown to associate with splicing complexes as part of the [U4/U6.U5] tri-snRNP particle [Chabot et al. (1995) Nucleic Acids Res. 23, 3206-3213]. In mouse and Drosophila cultured cells the electrophoretic mobility of p255, faster in the latter species, was identical to that of the hyperphosphorylated form of RNA polymerase II largest subunit (IIo). The CC-3 immunoreactivity of p255 was abolished by 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole, which is known to cause the dephosphorylation of the C-terminal domain of subunit IIo by inhibiting the TFIIH-associated kinase. The identity of p255 was confirmed by showing that CC-3-immunoprecipitated p255 was recognized by POL3/3 and 8WG16, two antibodies specific to RNA polymerase II largest subunit. Lastly, the recovery of RNA polymerase II largest subunit from HeLa splicing mixtures was compromised by EDTA, which prevents the interaction of p255 with splicing complexes and inhibits splicing. Our results indicate that p255 represents a highly phosphorylated form of RNA polymerase II largest subunit physically associated with spliceosomes and possibly involved in coupling transcription to RNA processing.

Full Text

The Full Text of this article is available as a PDF (83.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abmayr S. M., Reed R., Maniatis T. Identification of a functional mammalian spliceosome containing unspliced pre-mRNA. Proc Natl Acad Sci U S A. 1988 Oct;85(19):7216–7220. doi: 10.1073/pnas.85.19.7216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Allison L. A., Wong J. K., Fitzpatrick V. D., Moyle M., Ingles C. J. The C-terminal domain of the largest subunit of RNA polymerase II of Saccharomyces cerevisiae, Drosophila melanogaster, and mammals: a conserved structure with an essential function. Mol Cell Biol. 1988 Jan;8(1):321–329. doi: 10.1128/mcb.8.1.321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bartolomei M. S., Halden N. F., Cullen C. R., Corden J. L. Genetic analysis of the repetitive carboxyl-terminal domain of the largest subunit of mouse RNA polymerase II. Mol Cell Biol. 1988 Jan;8(1):330–339. doi: 10.1128/mcb.8.1.330. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bisotto S., Lauriault P., Duval M., Vincent M. Colocalization of a high molecular mass phosphoprotein of the nuclear matrix (p255) with spliceosomes. J Cell Sci. 1995 May;108(Pt 5):1873–1882. doi: 10.1242/jcs.108.5.1873. [DOI] [PubMed] [Google Scholar]
  5. Bond U. Heat shock but not other stress inducers leads to the disruption of a sub-set of snRNPs and inhibition of in vitro splicing in HeLa cells. EMBO J. 1988 Nov;7(11):3509–3518. doi: 10.1002/j.1460-2075.1988.tb03227.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bregman D. B., Du L., Li Y., Ribisi S., Warren S. L. Cytostellin distributes to nuclear regions enriched with splicing factors. J Cell Sci. 1994 Mar;107(Pt 3):387–396. doi: 10.1242/jcs.107.3.387. [DOI] [PubMed] [Google Scholar]
  7. Bregman D. B., Du L., van der Zee S., Warren S. L. Transcription-dependent redistribution of the large subunit of RNA polymerase II to discrete nuclear domains. J Cell Biol. 1995 Apr;129(2):287–298. doi: 10.1083/jcb.129.2.287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chabot B., Bisotto S., Vincent M. The nuclear matrix phosphoprotein p255 associates with splicing complexes as part of the [U4/U6.U5] tri-snRNP particle. Nucleic Acids Res. 1995 Aug 25;23(16):3206–3213. doi: 10.1093/nar/23.16.3206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Corden J. L. RNA polymerase II transcription cycles. Curr Opin Genet Dev. 1993 Apr;3(2):213–218. doi: 10.1016/0959-437x(93)90025-k. [DOI] [PubMed] [Google Scholar]
  10. Corden J. L. Tails of RNA polymerase II. Trends Biochem Sci. 1990 Oct;15(10):383–387. doi: 10.1016/0968-0004(90)90236-5. [DOI] [PubMed] [Google Scholar]
  11. Dahmus M. E. The role of multisite phosphorylation in the regulation of RNA polymerase II activity. Prog Nucleic Acid Res Mol Biol. 1994;48:143–179. doi: 10.1016/s0079-6603(08)60855-7. [DOI] [PubMed] [Google Scholar]
  12. Dignam J. D., Lebovitz R. M., Roeder R. G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 1983 Mar 11;11(5):1475–1489. doi: 10.1093/nar/11.5.1475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Dubois M. F., Nguyen V. T., Bellier S., Bensaude O. Inhibitors of transcription such as 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole and isoquinoline sulfonamide derivatives (H-8 and H-7) promote dephosphorylation of the carboxyl-terminal domain of RNA polymerase II largest subunit. J Biol Chem. 1994 May 6;269(18):13331–13336. [PubMed] [Google Scholar]
  14. Greenleaf A. L. Positive patches and negative noodles: linking RNA processing to transcription? Trends Biochem Sci. 1993 Apr;18(4):117–119. doi: 10.1016/0968-0004(93)90016-g. [DOI] [PubMed] [Google Scholar]
  15. Krämer A., Haars R., Kabisch R., Will H., Bautz F. A., Bautz E. K. Monoclonal antibody directed against RNA polymerase II of Drosophila melanogaster. Mol Gen Genet. 1980;180(1):193–199. doi: 10.1007/BF00267369. [DOI] [PubMed] [Google Scholar]
  16. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  17. Mortillaro M. J., Blencowe B. J., Wei X., Nakayasu H., Du L., Warren S. L., Sharp P. A., Berezney R. A hyperphosphorylated form of the large subunit of RNA polymerase II is associated with splicing complexes and the nuclear matrix. Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8253–8257. doi: 10.1073/pnas.93.16.8253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nonet M., Sweetser D., Young R. A. Functional redundancy and structural polymorphism in the large subunit of RNA polymerase II. Cell. 1987 Sep 11;50(6):909–915. doi: 10.1016/0092-8674(87)90517-4. [DOI] [PubMed] [Google Scholar]
  19. O'Brien T., Hardin S., Greenleaf A., Lis J. T. Phosphorylation of RNA polymerase II C-terminal domain and transcriptional elongation. Nature. 1994 Jul 7;370(6484):75–77. doi: 10.1038/370075a0. [DOI] [PubMed] [Google Scholar]
  20. Payne J. M., Laybourn P. J., Dahmus M. E. The transition of RNA polymerase II from initiation to elongation is associated with phosphorylation of the carboxyl-terminal domain of subunit IIa. J Biol Chem. 1989 Nov 25;264(33):19621–19629. [PubMed] [Google Scholar]
  21. Shukla R. R., Dominski Z., Zwierzynski T., Kole R. Inactivation of splicing factors in HeLa cells subjected to heat shock. J Biol Chem. 1990 Nov 25;265(33):20377–20383. [PubMed] [Google Scholar]
  22. Thibodeau A., Duchaine J., Simard J. L., Vincent M. Localization of molecules with restricted patterns of expression in morphogenesis: an immunohistochemical approach. Histochem J. 1989 Jun;21(6):348–356. doi: 10.1007/BF01798498. [DOI] [PubMed] [Google Scholar]
  23. Thibodeau A., Vincent M. Monoclonal antibody CC-3 recognizes phosphoproteins in interphase and mitotic cells. Exp Cell Res. 1991 Jul;195(1):145–153. doi: 10.1016/0014-4827(91)90510-2. [DOI] [PubMed] [Google Scholar]
  24. Thompson N. E., Steinberg T. H., Aronson D. B., Burgess R. R. Inhibition of in vivo and in vitro transcription by monoclonal antibodies prepared against wheat germ RNA polymerase II that react with the heptapeptide repeat of eukaryotic RNA polymerase II. J Biol Chem. 1989 Jul 5;264(19):11511–11520. [PubMed] [Google Scholar]
  25. Utans U., Behrens S. E., Lührmann R., Kole R., Krämer A. A splicing factor that is inactivated during in vivo heat shock is functionally equivalent to the [U4/U6.U5] triple snRNP-specific proteins. Genes Dev. 1992 Apr;6(4):631–641. doi: 10.1101/gad.6.4.631. [DOI] [PubMed] [Google Scholar]
  26. Warren S. L., Landolfi A. S., Curtis C., Morrow J. S. Cytostellin: a novel, highly conserved protein that undergoes continuous redistribution during the cell cycle. J Cell Sci. 1992 Oct;103(Pt 2):381–388. doi: 10.1242/jcs.103.2.381. [DOI] [PubMed] [Google Scholar]
  27. Wassarman D. A., Steitz J. A. Interactions of small nuclear RNA's with precursor messenger RNA during in vitro splicing. Science. 1992 Sep 25;257(5078):1918–1925. doi: 10.1126/science.1411506. [DOI] [PubMed] [Google Scholar]
  28. Woychik N. A., Young R. A. RNA polymerase II: subunit structure and function. Trends Biochem Sci. 1990 Sep;15(9):347–351. doi: 10.1016/0968-0004(90)90074-l. [DOI] [PubMed] [Google Scholar]
  29. Yost H. J., Lindquist S. RNA splicing is interrupted by heat shock and is rescued by heat shock protein synthesis. Cell. 1986 Apr 25;45(2):185–193. doi: 10.1016/0092-8674(86)90382-x. [DOI] [PubMed] [Google Scholar]
  30. Young R. A. RNA polymerase II. Annu Rev Biochem. 1991;60:689–715. doi: 10.1146/annurev.bi.60.070191.003353. [DOI] [PubMed] [Google Scholar]
  31. Yuryev A., Patturajan M., Litingtung Y., Joshi R. V., Gentile C., Gebara M., Corden J. L. The C-terminal domain of the largest subunit of RNA polymerase II interacts with a novel set of serine/arginine-rich proteins. Proc Natl Acad Sci U S A. 1996 Jul 9;93(14):6975–6980. doi: 10.1073/pnas.93.14.6975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Zawel L., Reinberg D. Advances in RNA polymerase II transcription. Curr Opin Cell Biol. 1992 Jun;4(3):488–495. doi: 10.1016/0955-0674(92)90016-6. [DOI] [PubMed] [Google Scholar]
  33. Zehring W. A., Lee J. M., Weeks J. R., Jokerst R. S., Greenleaf A. L. The C-terminal repeat domain of RNA polymerase II largest subunit is essential in vivo but is not required for accurate transcription initiation in vitro. Proc Natl Acad Sci U S A. 1988 Jun;85(11):3698–3702. doi: 10.1073/pnas.85.11.3698. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES