Abstract
We characterized the behavior of polymerase chain reactions (PCR) using degraded DNA as a template. We first demonstrated that fragments larger than the initial template fragments can be amplified if overlapping fragments are allowed to anneal and extend prior to routine PCR. Amplification products increase when degraded genomic DNA is pretreated by polymerization in the absence of specific primers. Secondly, we measured nucleotide uptake as a function of template DNA degradation. dNTP incorporation initially increases with increasing DNA fragmentation and then declines when the DNA becomes highly degraded. We demonstrated that dNTP uptake continues for >10 polymerization cycles and is affected by the quality and quantity of template DNA and by the amount of substrate dNTP. These results suggest that although reconstruction of degraded DNA may allow amplification of large fragments, reconstructive polymerization and amplification polymerization may compete. This was confirmed in PCR where the addition of degraded DNA reduced the resultant product. Because terminal deoxynucleotidyl transferase activity of Taq polymerase may inhibit 3' annealing and restrict the length of template reconstruction, we suggest modified PCR techniques which separate reconstructive and amplification polymerization reactions.
Full Text
The Full Text of this article is available as a PDF (112.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akane A., Shiono H., Matsubara K., Nakamura H., Hasegawa M., Kagawa M. Purification of forensic specimens for the polymerase chain reaction (PCR) analysis. J Forensic Sci. 1993 May;38(3):691–701. [PubMed] [Google Scholar]
- Barnes W. M. PCR amplification of up to 35-kb DNA with high fidelity and high yield from lambda bacteriophage templates. Proc Natl Acad Sci U S A. 1994 Mar 15;91(6):2216–2220. doi: 10.1073/pnas.91.6.2216. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bär W., Kratzer A., Mächler M., Schmid W. Postmortem stability of DNA. Forensic Sci Int. 1988 Oct;39(1):59–70. doi: 10.1016/0379-0738(88)90118-1. [DOI] [PubMed] [Google Scholar]
- Campbell V. W., Jackson D. A. The effect of divalent cations on the mode of action of DNase I. The initial reaction products produced from covalently closed circular DNA. J Biol Chem. 1980 Apr 25;255(8):3726–3735. [PubMed] [Google Scholar]
- Cheng S., Fockler C., Barnes W. M., Higuchi R. Effective amplification of long targets from cloned inserts and human genomic DNA. Proc Natl Acad Sci U S A. 1994 Jun 7;91(12):5695–5699. doi: 10.1073/pnas.91.12.5695. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DeSalle R., Barcia M., Wray C. PCR jumping in clones of 30-million-year-old DNA fragments from amber preserved termites (Mastotermes electrodominicus). Experientia. 1993 Oct 15;49(10):906–909. doi: 10.1007/BF01952607. [DOI] [PubMed] [Google Scholar]
- DeSalle R. Implications of ancient DNA for phylogenetic studies. Experientia. 1994 Jun 15;50(6):543–550. doi: 10.1007/BF01921723. [DOI] [PubMed] [Google Scholar]
- Fattorini P., Cacció S., Gustincih S., Florian F., Altamura B. M., Graziosi G. Sex identification by polymerase chain reaction of alpha-satellite in aged tissue samples. Electrophoresis. 1993 Jan-Feb;14(1-2):23–26. doi: 10.1002/elps.1150140105. [DOI] [PubMed] [Google Scholar]
- Fisher D. L., Holland M. M., Mitchell L., Sledzik P. S., Wilcox A. W., Wadhams M., Weedn V. W. Extraction, evaluation, and amplification of DNA from decalcified and undecalcified United States Civil War bone. J Forensic Sci. 1993 Jan;38(1):60–68. [PubMed] [Google Scholar]
- Handt O., Richards M., Trommsdorff M., Kilger C., Simanainen J., Georgiev O., Bauer K., Stone A., Hedges R., Schaffner W. Molecular genetic analyses of the Tyrolean Ice Man. Science. 1994 Jun 17;264(5166):1775–1778. doi: 10.1126/science.8209259. [DOI] [PubMed] [Google Scholar]
- Hardy C., Casane D., Vigne J. D., Callou C., Dennebouy N., Mounolou J. C., Monnerot M. Ancient DNA from Bronze Age bones of European rabbit (Oryctolagus cuniculus). Experientia. 1994 Jun 15;50(6):564–570. doi: 10.1007/BF01921726. [DOI] [PubMed] [Google Scholar]
- Irwin D. M., Kocher T. D., Wilson A. C. Evolution of the cytochrome b gene of mammals. J Mol Evol. 1991 Feb;32(2):128–144. doi: 10.1007/BF02515385. [DOI] [PubMed] [Google Scholar]
- Lindahl T., Andersson A. Rate of chain breakage at apurinic sites in double-stranded deoxyribonucleic acid. Biochemistry. 1972 Sep 12;11(19):3618–3623. doi: 10.1021/bi00769a019. [DOI] [PubMed] [Google Scholar]
- Lindahl T., Nyberg B. Rate of depurination of native deoxyribonucleic acid. Biochemistry. 1972 Sep 12;11(19):3610–3618. doi: 10.1021/bi00769a018. [DOI] [PubMed] [Google Scholar]
- Mannucci A., Sullivan K. M., Ivanov P. L., Gill P. Forensic application of a rapid and quantitative DNA sex test by amplification of the X-Y homologous gene amelogenin. Int J Legal Med. 1994;106(4):190–193. doi: 10.1007/BF01371335. [DOI] [PubMed] [Google Scholar]
- Päbo S. Ancient DNA: extraction, characterization, molecular cloning, and enzymatic amplification. Proc Natl Acad Sci U S A. 1989 Mar;86(6):1939–1943. doi: 10.1073/pnas.86.6.1939. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilson R. B., Ferrara J. L., Baum H. J., Shaler R. C. Guidelines for internal validation of the HLA-DQ alpha DNA typing system. Forensic Sci Int. 1994 May 25;66(1):9–22. doi: 10.1016/0379-0738(94)90315-8. [DOI] [PubMed] [Google Scholar]