Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1996 Dec 15;24(24):5051–5053. doi: 10.1093/nar/24.24.5051

Inhibition of self-splicing group I intron RNA: high-throughput screening assays.

H Y Mei 1, M Cui 1, S T Sutton 1, H N Truong 1, F Z Chung 1, A W Czarnik 1
PMCID: PMC146325  PMID: 9016680

Abstract

High-throughput screening assays have been developed to rapidly identify small molecule inhibitors targeting catalytic group I introns. Biochemical reactions catalyzed by a self-splicing group I intron derived from Pneumocystis carinii or from bacteriophage T4 have been investigated. In vitro biochemical assays amenable to high-throughput screening have been established. Small molecules that inhibit the functions of group I introns have been identified. These inhibitors should be useful in better understanding ribozyme catalysis or in therapeutic intervention of group I intron-containing microorganisms.

Full Text

The Full Text of this article is available as a PDF (59.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cech T. R. Self-splicing of group I introns. Annu Rev Biochem. 1990;59:543–568. doi: 10.1146/annurev.bi.59.070190.002551. [DOI] [PubMed] [Google Scholar]
  2. Green N. M. Avidin and streptavidin. Methods Enzymol. 1990;184:51–67. doi: 10.1016/0076-6879(90)84259-j. [DOI] [PubMed] [Google Scholar]
  3. Lin H., Niu M. T., Yoganathan T., Buck G. A. Characterization of the rRNA-encoding genes and transcripts, and a group-I self-splicing intron in Pneumocystis carinii. Gene. 1992 Oct 1;119(2):163–173. doi: 10.1016/0378-1119(92)90268-t. [DOI] [PubMed] [Google Scholar]
  4. Liu Y., Leibowitz M. J. Bidirectional effectors of a group I intron ribozyme. Nucleic Acids Res. 1995 Apr 25;23(8):1284–1291. doi: 10.1093/nar/23.8.1284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Liu Y., Tidwell R. R., Leibowitz M. J. Inhibition of in vitro splicing of a group I intron of Pneumocystis carinii. J Eukaryot Microbiol. 1994 Jan-Feb;41(1):31–38. doi: 10.1111/j.1550-7408.1994.tb05931.x. [DOI] [PubMed] [Google Scholar]
  6. Michel F., Westhof E. Modelling of the three-dimensional architecture of group I catalytic introns based on comparative sequence analysis. J Mol Biol. 1990 Dec 5;216(3):585–610. doi: 10.1016/0022-2836(90)90386-Z. [DOI] [PubMed] [Google Scholar]
  7. Whoriskey S. K., Usman N., Szostak J. W. Total chemical synthesis of a ribozyme derived from a group I intron. Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2465–2469. doi: 10.1073/pnas.92.7.2465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Yarus M., Majerfeld I. Co-optimization of ribozyme substrate stacking and L-arginine binding. J Mol Biol. 1992 Jun 20;225(4):945–949. doi: 10.1016/0022-2836(92)90095-2. [DOI] [PubMed] [Google Scholar]
  9. von Ahsen U., Davies J., Schroeder R. Antibiotic inhibition of group I ribozyme function. Nature. 1991 Sep 26;353(6342):368–370. doi: 10.1038/353368a0. [DOI] [PubMed] [Google Scholar]
  10. von Ahsen U., Schroeder R. Streptomycin inhibits splicing of group I introns by competition with the guanosine substrate. Nucleic Acids Res. 1991 May 11;19(9):2261–2265. doi: 10.1093/nar/19.9.2261. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES