Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1996 Dec 15;24(24):4933–4939. doi: 10.1093/nar/24.24.4933

Interaction of the RecA protein of Escherichia coli with single-stranded oligodeoxyribonucleotides.

P R Bianco 1, G M Weinstock 1
PMCID: PMC146329  PMID: 9016663

Abstract

The RecA protein of Escherichia coli performs a number of ATP-dependent, in vitro reactions and is a DNA-dependent ATPase. Small oligodeoxyribonucleotides were used as DNA cofactors in a kinetic analysis of the ATPase reaction. Polymers of deoxythymidilic acid as well as oligonucleotides of mixed base composition stimulated the RecA ATPase activity in a length-dependent fashion. Both the initial rate and the extent of the reaction were affected by chain length. Full activity was seen with chain lengths > or = 30 nt. Partial activity was seen with chain lengths of 15-30 nt. The lower activity of shorter oligonucleotides was not simply due to a reduced affinity for DNA, since effects of chain length on KmATP and the Hill coefficient for ATP hydrolysis were also observed. The results also suggested that single-stranded DNA secondary structure frequently affects the ATPase activity of RecA protein with oligodeoxyribonucleotides.

Full Text

The Full Text of this article is available as a PDF (86.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amaratunga M., Benight A. S. DNA sequence dependence of ATP hydrolysis by RecA protein. Biochem Biophys Res Commun. 1988 Nov 30;157(1):127–133. doi: 10.1016/s0006-291x(88)80022-6. [DOI] [PubMed] [Google Scholar]
  2. Berger S. L. Quantifying 32P-labeled and unlabeled nucleic acids. Methods Enzymol. 1987;152:49–54. doi: 10.1016/0076-6879(87)52009-2. [DOI] [PubMed] [Google Scholar]
  3. Brenner S. L., Mitchell R. S., Morrical S. W., Neuendorf S. K., Schutte B. C., Cox M. M. recA protein-promoted ATP hydrolysis occurs throughout recA nucleoprotein filaments. J Biol Chem. 1987 Mar 25;262(9):4011–4016. [PubMed] [Google Scholar]
  4. Cheng S., Van Houten B., Gamper H. B., Sancar A., Hearst J. E. Use of psoralen-modified oligonucleotides to trap three-stranded RecA-DNA complexes and repair of these cross-linked complexes by ABC excinuclease. J Biol Chem. 1988 Oct 15;263(29):15110–15117. [PubMed] [Google Scholar]
  5. Chiu S. K., Rao B. J., Story R. M., Radding C. M. Interactions of three strands in joints made by RecA protein. Biochemistry. 1993 Dec 7;32(48):13146–13155. doi: 10.1021/bi00211a025. [DOI] [PubMed] [Google Scholar]
  6. Cox M. M., Lehman I. R. recA protein of Escherichia coli promotes branch migration, a kinetically distinct phase of DNA strand exchange. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3433–3437. doi: 10.1073/pnas.78.6.3433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cox M. M. Why does RecA protein hydrolyse ATP? Trends Biochem Sci. 1994 May;19(5):217–222. doi: 10.1016/0968-0004(94)90025-6. [DOI] [PubMed] [Google Scholar]
  8. Craig N. L., Roberts J. W. E. coli recA protein-directed cleavage of phage lambda repressor requires polynucleotide. Nature. 1980 Jan 3;283(5742):26–30. doi: 10.1038/283026a0. [DOI] [PubMed] [Google Scholar]
  9. Craig N. L., Roberts J. W. Function of nucleoside triphosphate and polynucleotide in Escherichia coli recA protein-directed cleavage of phage lambda repressor. J Biol Chem. 1981 Aug 10;256(15):8039–8044. [PubMed] [Google Scholar]
  10. Egelman E. H., Stasiak A. Structure of helical RecA-DNA complexes. Complexes formed in the presence of ATP-gamma-S or ATP. J Mol Biol. 1986 Oct 20;191(4):677–697. doi: 10.1016/0022-2836(86)90453-5. [DOI] [PubMed] [Google Scholar]
  11. Golub E. I., Ward D. C., Radding C. M. Joints formed by RecA protein from oligonucleotides and duplex DNA block initiation and elongation of transcription. Nucleic Acids Res. 1992 Jun 25;20(12):3121–3125. doi: 10.1093/nar/20.12.3121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gonda D. K., Radding C. M. By searching processively RecA protein pairs DNA molecules that share a limited stretch of homology. Cell. 1983 Sep;34(2):647–654. doi: 10.1016/0092-8674(83)90397-5. [DOI] [PubMed] [Google Scholar]
  13. Griffith J., Shores C. G. RecA protein rapidly crystallizes in the presence of spermidine: a valuable step in its purification and physical characterization. Biochemistry. 1985 Jan 1;24(1):158–162. doi: 10.1021/bi00322a022. [DOI] [PubMed] [Google Scholar]
  14. Honigberg S. M., Gonda D. K., Flory J., Radding C. M. The pairing activity of stable nucleoprotein filaments made from recA protein, single-stranded DNA, and adenosine 5'-(gamma-thio)triphosphate. J Biol Chem. 1985 Sep 25;260(21):11845–11851. [PubMed] [Google Scholar]
  15. Hsieh P., Camerini-Otero C. S., Camerini-Otero R. D. The synapsis event in the homologous pairing of DNAs: RecA recognizes and pairs less than one helical repeat of DNA. Proc Natl Acad Sci U S A. 1992 Jul 15;89(14):6492–6496. doi: 10.1073/pnas.89.14.6492. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kim J. I., Cox M. M., Inman R. B. On the role of ATP hydrolysis in RecA protein-mediated DNA strand exchange. I. Bypassing a short heterologous insert in one DNA substrate. J Biol Chem. 1992 Aug 15;267(23):16438–16443. [PubMed] [Google Scholar]
  17. Kim J. I., Cox M. M., Inman R. B. On the role of ATP hydrolysis in RecA protein-mediated DNA strand exchange. II. Four-strand exchanges. J Biol Chem. 1992 Aug 15;267(23):16444–16449. [PubMed] [Google Scholar]
  18. King S. R., Richardson J. P. Role of homology and pathway specificity for recombination between plasmids and bacteriophage lambda. Mol Gen Genet. 1986 Jul;204(1):141–147. doi: 10.1007/BF00330201. [DOI] [PubMed] [Google Scholar]
  19. Konforti B. B., Davis R. W. ATP hydrolysis and the displaced strand are two factors that determine the polarity of RecA-promoted DNA strand exchange. J Mol Biol. 1992 Sep 5;227(1):38–53. doi: 10.1016/0022-2836(92)90680-i. [DOI] [PubMed] [Google Scholar]
  20. Kowalczykowski S. C., Clow J., Somani R., Varghese A. Effects of the Escherichia coli SSB protein on the binding of Escherichia coli RecA protein to single-stranded DNA. Demonstration of competitive binding and the lack of a specific protein-protein interaction. J Mol Biol. 1987 Jan 5;193(1):81–95. doi: 10.1016/0022-2836(87)90629-2. [DOI] [PubMed] [Google Scholar]
  21. Kowalczykowski S. C., Dixon D. A., Eggleston A. K., Lauder S. D., Rehrauer W. M. Biochemistry of homologous recombination in Escherichia coli. Microbiol Rev. 1994 Sep;58(3):401–465. doi: 10.1128/mr.58.3.401-465.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kowalczykowski S. C. Interaction of recA protein with a photoaffinity analogue of ATP, 8-azido-ATP: determination of nucleotide cofactor binding parameters and of the relationship between ATP binding and ATP hydrolysis. Biochemistry. 1986 Oct 7;25(20):5872–5881. doi: 10.1021/bi00368a006. [DOI] [PubMed] [Google Scholar]
  23. Leahy M. C., Radding C. M. Topography of the interaction of recA protein with single-stranded deoxyoligonucleotides. J Biol Chem. 1986 May 25;261(15):6954–6960. [PubMed] [Google Scholar]
  24. Lindsley J. E., Cox M. M. Dissociation pathway for recA nucleoprotein filaments formed on linear duplex DNA. J Mol Biol. 1989 Feb 20;205(4):695–711. doi: 10.1016/0022-2836(89)90315-x. [DOI] [PubMed] [Google Scholar]
  25. McEntee K., Weinstock G. M. tif-1 mutation alters polynucleotide recognition by the recA protein of Escherichia coli. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6061–6065. doi: 10.1073/pnas.78.10.6061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Menetski J. P., Bear D. G., Kowalczykowski S. C. Stable DNA heteroduplex formation catalyzed by the Escherichia coli RecA protein in the absence of ATP hydrolysis. Proc Natl Acad Sci U S A. 1990 Jan;87(1):21–25. doi: 10.1073/pnas.87.1.21. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Menetski J. P., Kowalczykowski S. C. Interaction of recA protein with single-stranded DNA. Quantitative aspects of binding affinity modulation by nucleotide cofactors. J Mol Biol. 1985 Jan 20;181(2):281–295. doi: 10.1016/0022-2836(85)90092-0. [DOI] [PubMed] [Google Scholar]
  28. Neuendorf S. K., Cox M. M. Exchange of recA protein between adjacent recA protein-single-stranded DNA complexes. J Biol Chem. 1986 Jun 25;261(18):8276–8282. [PubMed] [Google Scholar]
  29. Phizicky E. M., Roberts J. W. Kinetics of RecA protein-directed inactivation of repressors of phage lambda and phage P22. J Mol Biol. 1980 May 25;139(3):319–328. doi: 10.1016/0022-2836(80)90133-3. [DOI] [PubMed] [Google Scholar]
  30. Rao B. J., Chiu S. K., Radding C. M. Homologous recognition and triplex formation promoted by RecA protein between duplex oligonucleotides and single-stranded DNA. J Mol Biol. 1993 Jan 20;229(2):328–343. doi: 10.1006/jmbi.1993.1038. [DOI] [PubMed] [Google Scholar]
  31. Rao B. J., Radding C. M. Homologous recognition promoted by RecA protein via non-Watson-Crick bonds between identical DNA strands. Proc Natl Acad Sci U S A. 1993 Jul 15;90(14):6646–6650. doi: 10.1073/pnas.90.14.6646. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Riddles P. W., Lehman I. R. The formation of plectonemic joints by the recA protein of Escherichia coli. Requirement for ATP hydrolysis. J Biol Chem. 1985 Jan 10;260(1):170–173. [PubMed] [Google Scholar]
  33. Rosselli W., Stasiak A. Energetics of RecA-mediated recombination reactions. Without ATP hydrolysis RecA can mediate polar strand exchange but is unable to recycle. J Mol Biol. 1990 Nov 20;216(2):335–352. doi: 10.1016/S0022-2836(05)80325-0. [DOI] [PubMed] [Google Scholar]
  34. Rosselli W., Stasiak A. The ATPase activity of RecA is needed to push the DNA strand exchange through heterologous regions. EMBO J. 1991 Dec;10(13):4391–4396. doi: 10.1002/j.1460-2075.1991.tb05017.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Shen P., Huang H. V. Homologous recombination in Escherichia coli: dependence on substrate length and homology. Genetics. 1986 Mar;112(3):441–457. doi: 10.1093/genetics/112.3.441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Stasiak A. Z., Rosselli W., Stasiak A. RecA-DNA helical filaments in genetic recombination. Biochimie. 1991 Feb-Mar;73(2-3):199–208. doi: 10.1016/0300-9084(91)90203-d. [DOI] [PubMed] [Google Scholar]
  37. Story R. M., Weber I. T., Steitz T. A. The structure of the E. coli recA protein monomer and polymer. Nature. 1992 Jan 23;355(6358):318–325. doi: 10.1038/355318a0. [DOI] [PubMed] [Google Scholar]
  38. Volodin A. A., Smirnova H. A., Bocharova T. N. Efficient interaction of recA protein with fluorescent dye-labeled oligonucleotides. FEBS Lett. 1994 Jul 25;349(1):65–68. doi: 10.1016/0014-5793(94)00640-7. [DOI] [PubMed] [Google Scholar]
  39. Weinstock G. M., McEntee K., Lehman I. R. ATP-dependent renaturation of DNA catalyzed by the recA protein of Escherichia coli. Proc Natl Acad Sci U S A. 1979 Jan;76(1):126–130. doi: 10.1073/pnas.76.1.126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Weinstock G. M., McEntee K., Lehman I. R. Hydrolysis of nucleoside triphosphates catalyzed by the recA protein of Escherichia coli. Characterization of ATP hydrolysis. J Biol Chem. 1981 Aug 25;256(16):8829–8834. [PubMed] [Google Scholar]
  41. Weinstock G. M., McEntee K., Lehman I. R. Hydrolysis of nucleoside triphosphates catalyzed by the recA protein of Escherichia coli. Hydrolysis of UTP. J Biol Chem. 1981 Aug 25;256(16):8856–8858. [PubMed] [Google Scholar]
  42. Weinstock G. M., McEntee K., Lehman I. R. Hydrolysis of nucleoside triphosphates catalyzed by the recA protein of Escherichia coli. Steady state kinetic analysis of ATP hydrolysis. J Biol Chem. 1981 Aug 25;256(16):8845–8849. [PubMed] [Google Scholar]
  43. Weinstock G. M., McEntee K. RecA protein-dependent proteolysis of bacteriophage lambda repressor Characterization of the reaction and stimulation by DNA-binding proteins. J Biol Chem. 1981 Nov 10;256(21):10883–10888. [PubMed] [Google Scholar]
  44. Wittung P., Funk M., Jernström B., Nordén B., Takahashi M. Fluorescence-detected interactions of oligonucleotides in RecA complexes. FEBS Lett. 1995 Jul 10;368(1):64–68. doi: 10.1016/0014-5793(95)00600-e. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES