Abstract
In a randomised double-blind study, the effects on red cell deformability of a single sublingual dose of nifedipine were compared with placebo in eight patients with stable angina pectoris. Red cell deformability, measured by filtration and centrifugation techniques, was significantly increased at rest in all eight patients 1 h after nifedipine, while no change occurred after placebo. The improvement in deformability after nifedipine was maintained at the end of a period of exercise and unchanged from resting values after placebo. The results suggest that the increased deformability of red cells after nifedipine could contribute to the therapeutic effects of the drug in myocardial ischaemia.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baeckström P., Folkow B., Kendrick E., Löfving B., Oberg B. Effects of vasoconstriction on blood viscosity in vivo. Acta Physiol Scand. 1971 Mar;81(3):376–384. doi: 10.1111/j.1748-1716.1971.tb04912.x. [DOI] [PubMed] [Google Scholar]
- Cocco G., Strozzi C., Chu D., Amrein R., Castagnoli E. Therapeutic effects of pindolol and nifedipine in patients with stable angina pectoris and asymptomatic resting ischemia. Eur J Cardiol. 1979 Jul;10(1):59–69. [PubMed] [Google Scholar]
- Dargie H., Rowland E., Krikler D. Role of calcium antagonists in cardiovascular therapy. Br Heart J. 1981 Jul;46(1):8–16. doi: 10.1136/hrt.46.1.8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Cree J., De Cock W., Geukens H., De Clerck F., Beerens M., Verhaegen H. The rheological effects of cinnarizine and flunarizine in normal and pathologic conditions. Angiology. 1979 Aug;30(8):505–515. doi: 10.1177/000331977903000801. [DOI] [PubMed] [Google Scholar]
- Gaehtgens P., Uekermann U. The apparent viscosity of blood in different vascular compartments of the autoperfused canine foreleg, and its variation with hematocrit. Bibl Anat. 1973;11:76–82. [PubMed] [Google Scholar]
- Larsen F. L., Katz S., Roufogalis B. D., Brooks D. E. Physiological shear stresses enhance the Ca2+ permeability of human erythrocytes. Nature. 1981 Dec 17;294(5842):667–668. doi: 10.1038/294667a0. [DOI] [PubMed] [Google Scholar]
- Nayler W. G., Poole-Wilson P. Calcium antagonists: definition and mode of action. Basic Res Cardiol. 1981 Jan-Feb;76(1):1–15. doi: 10.1007/BF01908159. [DOI] [PubMed] [Google Scholar]
- Nellis S. H., Liedtke A. J., Whitesell L. Small coronary vessel pressure and diameter in an intact beating rabbit heart using fixed-position and free-motion techniques. Circ Res. 1981 Aug;49(2):342–353. doi: 10.1161/01.res.49.2.342. [DOI] [PubMed] [Google Scholar]
- Palek J., Liu S. C. Dependence of spectrin organization in red blood cell membranes on cell metabolism: implications for control of red cell shape, deformability, and surface area. Semin Hematol. 1979 Jan;16(1):75–93. [PubMed] [Google Scholar]
- Plishker G. A., Gitelman H. J. Calcium dependent ATP losses in intact red blood cells without cellular accumulations of calcium. J Membr Biol. 1977 Aug 4;35(4):309–318. doi: 10.1007/BF01869956. [DOI] [PubMed] [Google Scholar]
- Porzig H. ATP-independent calcium net movements in human red cell ghosts. J Membr Biol. 1972;8(3):237–258. doi: 10.1007/BF01868105. [DOI] [PubMed] [Google Scholar]
- Quist E. E. Regulation of erythrocyte membrane shape by Ca2+. Biochem Biophys Res Commun. 1980 Jan 29;92(2):631–637. doi: 10.1016/0006-291x(80)90380-0. [DOI] [PubMed] [Google Scholar]
- Reid H. L., Barnes A. J., Lock P. J., Dormandy J. A., Dormandy T. L. A simple method for measuring erythrocyte deformability. J Clin Pathol. 1976 Sep;29(9):855–858. doi: 10.1136/jcp.29.9.855. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reid H. L., Dormandy J. A., Barnes A. J., Lock P. J., Dormandy T. L. Impaired red cell deformability in peripheral vascular disease. Lancet. 1976 Mar 27;1(7961):666–668. doi: 10.1016/s0140-6736(76)92778-1. [DOI] [PubMed] [Google Scholar]
- Schatzmann H. J., Vincenzi F. F. Calcium movements across the membrane of human red cells. J Physiol. 1969 Apr;201(2):369–395. doi: 10.1113/jphysiol.1969.sp008761. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmid-Schönbein H., Wells R. E., Jr Rheological properties of human erythrocytes and their influence upon the "anomalous" viscosity of blood. Ergeb Physiol. 1971;63:146–219. doi: 10.1007/BFb0047743. [DOI] [PubMed] [Google Scholar]
- Sirs J. A. Automatic recording of the rate of packing of erythrocytes in blood by a centrifuge. Phys Med Biol. 1970 Jan;15(1):9–14. doi: 10.1088/0031-9155/15/1/302. [DOI] [PubMed] [Google Scholar]
- Taylor H. M., Chien S., Gregersen M. I., Lundberg J. L. Comparison of viscometric behaviour of suspensions of polystyrene latex and human blood cells. Nature. 1965 Jul 3;207(992):77–78. doi: 10.1038/207077a0. [DOI] [PubMed] [Google Scholar]
- Tillmanns H., Steinhausen M., Leinberger H., Thederan H., Kübler W. Pressure measurements in the terminal vascular bed of the epimyocardium of rats and cats. Circ Res. 1981 Nov;49(5):1202–1211. doi: 10.1161/01.res.49.5.1202. [DOI] [PubMed] [Google Scholar]
- Van Nueten J. M., Vanhoutte P. M. Improvement of tissue perfusion with inhibitors of calcium ion influx. Biochem Pharmacol. 1980 Feb 15;29(4):479–481. doi: 10.1016/0006-2952(80)90365-2. [DOI] [PubMed] [Google Scholar]
- Weed R. I., LaCelle P. L., Merrill E. W. Metabolic dependence of red cell deformability. J Clin Invest. 1969 May;48(5):795–809. doi: 10.1172/JCI106038. [DOI] [PMC free article] [PubMed] [Google Scholar]
