Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1996 Dec 15;24(24):4954–4961. doi: 10.1093/nar/24.24.4954

Functional domains of transcription factor hGABP beta1/E4TF1-53 required for nuclear localization and transcription activation.

C Sawa 1, M Goto 1, F Suzuki 1, H Watanabe 1, J Sawada 1, H Handa 1
PMCID: PMC146336  PMID: 9016666

Abstract

Transcription factor E4TF1 is the human homolog of GABP and has been renamed hGABP (human GABP). hGABP is composed of two types of subunits; hGABP beta1/E4TF1-53 and the ets-related protein hGABP alpha/E4TF1-60. Both bind together to form an (alpha)2(beta1)2 heterotetrameric complex on DNA and activate transcription at specific promoters in vitro. Tetramer formation depends on two regions of hGABP beta1; the N-terminal region containing the Notch/ankyrin-type repeats is necessary for binding to hGABP alpha and the C-terminal region is necessary for homodimerization. In this report, we constructed various deletion mutants of hGABP beta1 in order to delimit the functional regions required for nuclear localization and transcription activity. We found that hGABP beta1 localization in the nucleus is dependent on a region located between amino acids 243 and 330 and that the presence of hGABP beta1 influences the efficiency of hGABP alpha transport into the nucleus. Next, we demonstrated that the hGABP complex composed of alpha and beta1 subunits activates transcription from the adenovirus early 4 promoter in vivo. This transcription activation needs the C-terminal region of hGABP beta1 and is consistent with results obtained with the in vitro assay. Furthermore, site-directed mutagenesis analysis of the C-terminal region reveals that the alpha-helix structure and the leucine residues are important for formation of a heterotetrameric complex with hGABP alpha in vitro and for transcription activation in vivo. These results suggest that hGABP beta1 stimulates transcription as part of a heterotetrameric complex with hGABP alpha in vivo.

Full Text

The Full Text of this article is available as a PDF (341.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bolwig G. M., Bruder J. T., Hearing P. Different binding site requirements for binding and activation for the bipartite enhancer factor EF-1A. Nucleic Acids Res. 1992 Dec 25;20(24):6555–6564. doi: 10.1093/nar/20.24.6555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boulukos K. E., Pognonec P., Rabault B., Begue A., Ghysdael J. Definition of an Ets1 protein domain required for nuclear localization in cells and DNA-binding activity in vitro. Mol Cell Biol. 1989 Dec;9(12):5718–5721. doi: 10.1128/mcb.9.12.5718. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Breeden L., Nasmyth K. Similarity between cell-cycle genes of budding yeast and fission yeast and the Notch gene of Drosophila. Nature. 1987 Oct 15;329(6140):651–654. doi: 10.1038/329651a0. [DOI] [PubMed] [Google Scholar]
  4. Chen C. A., Okayama H. Calcium phosphate-mediated gene transfer: a highly efficient transfection system for stably transforming cells with plasmid DNA. Biotechniques. 1988 Jul-Aug;6(7):632–638. [PubMed] [Google Scholar]
  5. Courey A. J., Tjian R. Analysis of Sp1 in vivo reveals multiple transcriptional domains, including a novel glutamine-rich activation motif. Cell. 1988 Dec 2;55(5):887–898. doi: 10.1016/0092-8674(88)90144-4. [DOI] [PubMed] [Google Scholar]
  6. Goto M., Shimizu T., Sawada J., Sawa C., Watanabe H., Ichikawa H., Ohira M., Ohki M., Handa H. Assignment of the E4TF1-60 gene to human chromosome 21q21.2-q21.3. Gene. 1995 Dec 12;166(2):337–338. doi: 10.1016/0378-1119(95)00575-7. [DOI] [PubMed] [Google Scholar]
  7. Gugneja S., Virbasius J. V., Scarpulla R. C. Four structurally distinct, non-DNA-binding subunits of human nuclear respiratory factor 2 share a conserved transcriptional activation domain. Mol Cell Biol. 1995 Jan;15(1):102–111. doi: 10.1128/mcb.15.1.102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Janknecht R. Analysis of the ERK-stimulated ETS transcription factor ER81. Mol Cell Biol. 1996 Apr;16(4):1550–1556. doi: 10.1128/mcb.16.4.1550. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. LaMarco K. L., McKnight S. L. Purification of a set of cellular polypeptides that bind to the purine-rich cis-regulatory element of herpes simplex virus immediate early genes. Genes Dev. 1989 Sep;3(9):1372–1383. doi: 10.1101/gad.3.9.1372. [DOI] [PubMed] [Google Scholar]
  10. LaMarco K., Thompson C. C., Byers B. P., Walton E. M., McKnight S. L. Identification of Ets- and notch-related subunits in GA binding protein. Science. 1991 Aug 16;253(5021):789–792. doi: 10.1126/science.1876836. [DOI] [PubMed] [Google Scholar]
  11. Landschulz W. H., Johnson P. F., McKnight S. L. The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science. 1988 Jun 24;240(4860):1759–1764. doi: 10.1126/science.3289117. [DOI] [PubMed] [Google Scholar]
  12. Lux S. E., John K. M., Bennett V. Analysis of cDNA for human erythrocyte ankyrin indicates a repeated structure with homology to tissue-differentiation and cell-cycle control proteins. Nature. 1990 Mar 1;344(6261):36–42. doi: 10.1038/344036a0. [DOI] [PubMed] [Google Scholar]
  13. Marchioni M., Morabito S., Salvati A. L., Beccari E., Carnevali F. XrpFI, an amphibian transcription factor composed of multiple polypeptides immunologically related to the GA-binding protein alpha and beta subunits, is differentially expressed during Xenopus laevis development. Mol Cell Biol. 1993 Oct;13(10):6479–6489. doi: 10.1128/mcb.13.10.6479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Niwa H., Yamamura K., Miyazaki J. Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene. 1991 Dec 15;108(2):193–199. doi: 10.1016/0378-1119(91)90434-d. [DOI] [PubMed] [Google Scholar]
  15. O'Shea E. K., Klemm J. D., Kim P. S., Alber T. X-ray structure of the GCN4 leucine zipper, a two-stranded, parallel coiled coil. Science. 1991 Oct 25;254(5031):539–544. doi: 10.1126/science.1948029. [DOI] [PubMed] [Google Scholar]
  16. Roberts B. Nuclear location signal-mediated protein transport. Biochim Biophys Acta. 1989 Aug 14;1008(3):263–280. doi: 10.1016/0167-4781(89)90016-x. [DOI] [PubMed] [Google Scholar]
  17. Rosmarin A. G., Caprio D. G., Kirsch D. G., Handa H., Simkevich C. P. GABP and PU.1 compete for binding, yet cooperate to increase CD18 (beta 2 leukocyte integrin) transcription. J Biol Chem. 1995 Oct 6;270(40):23627–23633. doi: 10.1074/jbc.270.40.23627. [DOI] [PubMed] [Google Scholar]
  18. Savoysky E., Mizuno T., Sowa Y., Watanabe H., Sawada J., Nomura H., Ohsugi Y., Handa H., Sakai T. The retinoblastoma binding factor 1 (RBF-1) site in RB gene promoter binds preferentially E4TF1, a member of the Ets transcription factors family. Oncogene. 1994 Jul;9(7):1839–1846. [PubMed] [Google Scholar]
  19. Sawada J., Goto M., Sawa C., Watanabe H., Handa H. Transcriptional activation through the tetrameric complex formation of E4TF1 subunits. EMBO J. 1994 Mar 15;13(6):1396–1402. doi: 10.1002/j.1460-2075.1994.tb06393.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sawada J., Goto M., Watanabe H., Handa H., Yoshida M. C. Regional mapping of two subunits of transcription factor E4TF1 to human chromosome. Jpn J Cancer Res. 1995 Jan;86(1):10–12. doi: 10.1111/j.1349-7006.1995.tb02981.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Schneider I. Cell lines derived from late embryonic stages of Drosophila melanogaster. J Embryol Exp Morphol. 1972 Apr;27(2):353–365. [PubMed] [Google Scholar]
  22. Thanos D., Maniatis T. Virus induction of human IFN beta gene expression requires the assembly of an enhanceosome. Cell. 1995 Dec 29;83(7):1091–1100. doi: 10.1016/0092-8674(95)90136-1. [DOI] [PubMed] [Google Scholar]
  23. Thompson C. C., Brown T. A., McKnight S. L. Convergence of Ets- and notch-related structural motifs in a heteromeric DNA binding complex. Science. 1991 Aug 16;253(5021):762–768. doi: 10.1126/science.1876833. [DOI] [PubMed] [Google Scholar]
  24. Thummel C. S., Boulet A. M., Lipshitz H. D. Vectors for Drosophila P-element-mediated transformation and tissue culture transfection. Gene. 1988 Dec 30;74(2):445–456. doi: 10.1016/0378-1119(88)90177-1. [DOI] [PubMed] [Google Scholar]
  25. Vandromme M., Gauthier-Rouvière C., Lamb N., Fernandez A. Regulation of transcription factor localization: fine-tuning of gene expression. Trends Biochem Sci. 1996 Feb;21(2):59–64. [PubMed] [Google Scholar]
  26. Virbasius J. V., Virbasius C. A., Scarpulla R. C. Identity of GABP with NRF-2, a multisubunit activator of cytochrome oxidase expression, reveals a cellular role for an ETS domain activator of viral promoters. Genes Dev. 1993 Mar;7(3):380–392. doi: 10.1101/gad.7.3.380. [DOI] [PubMed] [Google Scholar]
  27. Wasylyk B., Hahn S. L., Giovane A. The Ets family of transcription factors. Eur J Biochem. 1993 Jan 15;211(1-2):7–18. doi: 10.1007/978-3-642-78757-7_2. [DOI] [PubMed] [Google Scholar]
  28. Watanabe H., Imai T., Sharp P. A., Handa H. Identification of two transcription factors that bind to specific elements in the promoter of the adenovirus early-region 4. Mol Cell Biol. 1988 Mar;8(3):1290–1300. doi: 10.1128/mcb.8.3.1290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Watanabe H., Sawada J., Yano K., Yamaguchi K., Goto M., Handa H. cDNA cloning of transcription factor E4TF1 subunits with Ets and notch motifs. Mol Cell Biol. 1993 Mar;13(3):1385–1391. doi: 10.1128/mcb.13.3.1385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Watanabe H., Wada T., Handa H. Transcription factor E4TF1 contains two subunits with different functions. EMBO J. 1990 Mar;9(3):841–847. doi: 10.1002/j.1460-2075.1990.tb08181.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Yoganathan T., Bhat N. K., Sells B. H. A positive regulator of the ribosomal protein gene, beta factor, belongs to the ETS oncoprotein family. Biochem J. 1992 Oct 15;287(Pt 2):349–353. doi: 10.1042/bj2870349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Yokomori N., Kobayashi R., Moore R., Sueyoshi T., Negishi M. A DNA methylation site in the male-specific P450 (Cyp 2d-9) promoter and binding of the heteromeric transcription factor GABP. Mol Cell Biol. 1995 Oct;15(10):5355–5362. doi: 10.1128/mcb.15.10.5355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. de la Brousse F. C., Birkenmeier E. H., King D. S., Rowe L. B., McKnight S. L. Molecular and genetic characterization of GABP beta. Genes Dev. 1994 Aug 1;8(15):1853–1865. doi: 10.1101/gad.8.15.1853. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES