Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1996 Dec 15;24(24):4924–4932. doi: 10.1093/nar/24.24.4924

In vivo persistence of DNA triple helices containing psoralen-conjugated oligodeoxyribonucleotides.

M Musso 1, J C Wang 1, M W Van Dyke 1
PMCID: PMC146337  PMID: 9016662

Abstract

Triple helices represent an attractive method for modulating specific gene expression. In particular, cross-linking between a triplex-forming oligonucleotide (TFO) and its duplex DNA target, typically through the formation of psoralen photoadducts, allows efficient blocking of elongation by RNA polymerases in vitro. However, in vivo, this approach is limited by DNA repair of the photoadduct. Here we describe the use of an oligodeoxyribonucleotide 19mer psoralen-modified TFO to form covalent linkages between an oligonucleotide and both strands of the targeted duplex DNA, thereby efficiently blocking expression of a luciferase reporter gene. Most importantly, we demonstrate that both the psoralen cross-link and the purine-motif triplex remained intact for at least 72 h post-transfection, indicating that such species can persist for an extended period of time in vivo. These findings support the feasibility of an antigene approach for the therapeutic regulation of specific gene expression.

Full Text

The Full Text of this article is available as a PDF (228.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bates P. J., Macaulay V. M., McLean M. J., Jenkins T. C., Reszka A. P., Laughton C. A., Neidle S. Characteristics of triplex-directed photoadduct formation by psoralen-linked oligodeoxynucleotides. Nucleic Acids Res. 1995 Nov 11;23(21):4283–4289. doi: 10.1093/nar/23.21.4283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beal P. A., Dervan P. B. Second structural motif for recognition of DNA by oligonucleotide-directed triple-helix formation. Science. 1991 Mar 15;251(4999):1360–1363. doi: 10.1126/science.2003222. [DOI] [PubMed] [Google Scholar]
  3. Beal P. A., Dervan P. B. The influence of single base triplet changes on the stability of a pur.pur.pyr triple helix determined by affinity cleaving. Nucleic Acids Res. 1992 Jun 11;20(11):2773–2776. doi: 10.1093/nar/20.11.2773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cheng A. J., Van Dyke M. W. Monovalent cation effects on intermolecular purine-purine-pyrimidine triple-helix formation. Nucleic Acids Res. 1993 Dec 11;21(24):5630–5635. doi: 10.1093/nar/21.24.5630. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cheng A. J., Van Dyke M. W. Oligodeoxyribonucleotide length and sequence effects on intermolecular purine-purine-pyrimidine triple-helix formation. Nucleic Acids Res. 1994 Nov 11;22(22):4742–4747. doi: 10.1093/nar/22.22.4742. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cimino G. D., Gamper H. B., Isaacs S. T., Hearst J. E. Psoralens as photoactive probes of nucleic acid structure and function: organic chemistry, photochemistry, and biochemistry. Annu Rev Biochem. 1985;54:1151–1193. doi: 10.1146/annurev.bi.54.070185.005443. [DOI] [PubMed] [Google Scholar]
  7. Degols G., Clarenc J. P., Lebleu B., Léonetti J. P. Reversible inhibition of gene expression by a psoralen functionalized triple helix forming oligonucleotide in intact cells. J Biol Chem. 1994 Jun 17;269(24):16933–16937. [PubMed] [Google Scholar]
  8. Duval-Valentin G., Thuong N. T., Hélène C. Specific inhibition of transcription by triple helix-forming oligonucleotides. Proc Natl Acad Sci U S A. 1992 Jan 15;89(2):504–508. doi: 10.1073/pnas.89.2.504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Frank-Kamenetskii M. D., Mirkin S. M. Triplex DNA structures. Annu Rev Biochem. 1995;64:65–95. doi: 10.1146/annurev.bi.64.070195.000433. [DOI] [PubMed] [Google Scholar]
  10. Gasparro F. P., Havre P. A., Olack G. A., Gunther E. J., Glazer P. M. Site-specific targeting of psoralen photoadducts with a triple helix-forming oligonucleotide: characterization of psoralen monoadduct and crosslink formation. Nucleic Acids Res. 1994 Jul 25;22(14):2845–2852. doi: 10.1093/nar/22.14.2845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hardenbol P., Van Dyke M. W. Sequence specificity of triplex DNA formation: Analysis by a combinatorial approach, restriction endonuclease protection selection and amplification. Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):2811–2816. doi: 10.1073/pnas.93.7.2811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Macaulay V. M., Bates P. J., McLean M. J., Rowlands M. G., Jenkins T. C., Ashworth A., Neidle S. Inhibition of aromatase expression by a psoralen-linked triplex-forming oligonucleotide targeted to a coding sequence. FEBS Lett. 1995 Sep 25;372(2-3):222–228. doi: 10.1016/0014-5793(95)00987-k. [DOI] [PubMed] [Google Scholar]
  13. Maher L. J., 3rd Prospects for the therapeutic use of antigene oligonucleotides. Cancer Invest. 1996;14(1):66–82. doi: 10.3109/07357909609018437. [DOI] [PubMed] [Google Scholar]
  14. Musso M., Van Dyke M. W. Polyamine effects on purine-purine-pyrimidine triple helix formation by phosphodiester and phosphorothioate oligodeoxyribonucleotides. Nucleic Acids Res. 1995 Jun 25;23(12):2320–2327. doi: 10.1093/nar/23.12.2320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Olivas W. M., Maher L. J., 3rd Competitive triplex/quadruplex equilibria involving guanine-rich oligonucleotides. Biochemistry. 1995 Jan 10;34(1):278–284. doi: 10.1021/bi00001a034. [DOI] [PubMed] [Google Scholar]
  16. Orson F. M., Thomas D. W., McShan W. M., Kessler D. J., Hogan M. E. Oligonucleotide inhibition of IL2R alpha mRNA transcription by promoter region collinear triplex formation in lymphocytes. Nucleic Acids Res. 1991 Jun 25;19(12):3435–3441. doi: 10.1093/nar/19.12.3435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sancar A., Tang M. S. Nucleotide excision repair. Photochem Photobiol. 1993 May;57(5):905–921. doi: 10.1111/j.1751-1097.1993.tb09233.x. [DOI] [PubMed] [Google Scholar]
  18. Sandor Z., Bredberg A. Deficient DNA repair of triple helix-directed double psoralen damage in human cells. FEBS Lett. 1995 Oct 30;374(2):287–291. doi: 10.1016/0014-5793(95)01133-y. [DOI] [PubMed] [Google Scholar]
  19. Sandor Z., Bredberg A. Repair of triple helix directed psoralen adducts in human cells. Nucleic Acids Res. 1994 Jun 11;22(11):2051–2056. doi: 10.1093/nar/22.11.2051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sawadogo M., Roeder R. G. Factors involved in specific transcription by human RNA polymerase II: analysis by a rapid and quantitative in vitro assay. Proc Natl Acad Sci U S A. 1985 Jul;82(13):4394–4398. doi: 10.1073/pnas.82.13.4394. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sawadogo M., Van Dyke M. W. A rapid method for the purification of deprotected oligodeoxynucleotides. Nucleic Acids Res. 1991 Feb 11;19(3):674–674. doi: 10.1093/nar/19.3.674. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Shi Y. B., Gamper H., Hearst J. E. Interaction of T7 RNA polymerase with DNA in an elongation complex arrested at a specific psoralen adduct site. J Biol Chem. 1988 Jan 5;263(1):527–534. [PubMed] [Google Scholar]
  23. Shi Y. B., Gamper H., Van Houten B., Hearst J. E. Interaction of Escherichia coli RNA polymerase with DNA in an elongation complex arrested at a specific psoralen crosslink site. J Mol Biol. 1988 Jan 20;199(2):277–293. doi: 10.1016/0022-2836(88)90314-2. [DOI] [PubMed] [Google Scholar]
  24. Svinarchuk F., Debin A., Bertrand J. R., Malvy C. Investigation of the intracellular stability and formation of a triple helix formed with a short purine oligonucleotide targeted to the murine c-pim-1 proto-oncogene promotor. Nucleic Acids Res. 1996 Jan 15;24(2):295–302. doi: 10.1093/nar/24.2.295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Svoboda D. L., Taylor J. S., Hearst J. E., Sancar A. DNA repair by eukaryotic nucleotide excision nuclease. Removal of thymine dimer and psoralen monoadduct by HeLa cell-free extract and of thymine dimer by Xenopus laevis oocytes. J Biol Chem. 1993 Jan 25;268(3):1931–1936. [PubMed] [Google Scholar]
  26. Takasugi M., Guendouz A., Chassignol M., Decout J. L., Lhomme J., Thuong N. T., Hélène C. Sequence-specific photo-induced cross-linking of the two strands of double-helical DNA by a psoralen covalently linked to a triple helix-forming oligonucleotide. Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5602–5606. doi: 10.1073/pnas.88.13.5602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wang G., Glazer P. M. Altered repair of targeted psoralen photoadducts in the context of an oligonucleotide-mediated triple helix. J Biol Chem. 1995 Sep 22;270(38):22595–22601. doi: 10.1074/jbc.270.38.22595. [DOI] [PubMed] [Google Scholar]
  28. Wang G., Seidman M. M., Glazer P. M. Mutagenesis in mammalian cells induced by triple helix formation and transcription-coupled repair. Science. 1996 Feb 9;271(5250):802–805. doi: 10.1126/science.271.5250.802. [DOI] [PubMed] [Google Scholar]
  29. Yagi T., Takebe H. Establishment by SV40 transformation and characteristics of a cell line of xeroderma pigmentosum belonging to complementation group F. Mutat Res. 1983 Feb;112(1):59–66. doi: 10.1016/0167-8817(83)90024-x. [DOI] [PubMed] [Google Scholar]
  30. Young S. L., Krawczyk S. H., Matteucci M. D., Toole J. J. Triple helix formation inhibits transcription elongation in vitro. Proc Natl Acad Sci U S A. 1991 Nov 15;88(22):10023–10026. doi: 10.1073/pnas.88.22.10023. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES