Skip to main content
British Journal of Clinical Pharmacology logoLink to British Journal of Clinical Pharmacology
. 1984;18(Suppl 2):209S–214S. doi: 10.1111/j.1365-2125.1984.tb02600.x

Effect of converting enzyme inhibition by enalapril on sodium homeostasis in the rat

B Jover, A Mimran
PMCID: PMC1463485  PMID: 6099736

Abstract

1 The effect of oral treatment with the converting enzyme inhibitor enalapril on sodium homeostasis was investigated in the rat.

2 Treatment by enalapril prior to and during a 6 day period following abrupt suppression of dietary Na+ was associated with a sodium wasting state (urinary Na+ always exceeded intake during the observation period) and blunting by 90% of the aldosterone response to Na+ restriction

3 In rats on chronic low Na+ intake, enalapril produced a slight, transient natriuresis together with a marked increase in drinking volume.

4 In Na+ replete rats, enalapril had no influence on sodium balance.

5 Converting enzyme inhibition markedly impaired the systemic and renal response to Na restriction and enalapril had no natriuretic effect in the Na+ replete state.

Keywords: converting enzyme inhibition, enalapril, sodium, homeostasis

Full text

PDF
209S

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aguilera G., Hauger R. L., Catt K. J. Control of aldosterone secretion during sodium restriction: adrenal receptor regulation and increased adrenal sensitivity to angiotensin II. Proc Natl Acad Sci U S A. 1978 Feb;75(2):975–979. doi: 10.1073/pnas.75.2.975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Avrith D., Fitzsimons J. T. Intracranial angiotensin II stimulates sodium appetite in the rat [proceedings]. J Physiol. 1978 Sep;282:40P–41P. [PubMed] [Google Scholar]
  3. Casellas D., Mimran A., Dupont M., Chevillard C. Attenuation by SQ 14,255 (captopril) of the vascular response to noradrenaline in the rate isolated kidney. Br J Clin Pharmacol. 1980 Dec;10(6):621–623. doi: 10.1111/j.1365-2125.1980.tb00521.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Galler M., Backenroth R., Folkert V. W., Schlondorff D. Effect of converting enzyme inhibitors on prostaglandin synthesis by isolated glomeruli and aortic strips from rats. J Pharmacol Exp Ther. 1982 Jan;220(1):23–28. [PubMed] [Google Scholar]
  5. Geller R. G., Margolius H. S., Pisano J. J., Keiser H. R. Effects of mineralocorticoids, altered sodium intake, and adrenalectomy on urinary kallikrein in rats. Circ Res. 1972 Dec;31(6):857–861. doi: 10.1161/01.res.31.6.857. [DOI] [PubMed] [Google Scholar]
  6. Gross D. M., Sweet C. S., Ulm E. H., Backlund E. P., Morris A. A., Weitz D., Bohn D. L., Wenger H. C., Vassil T. C., Stone C. A. Effect of N-[(S)-1-carboxy-3-phenylpropyl]-L-Ala-L-Pro and its ethyl ester (MK-421) on angiotensin converting enzyme in vitro and angiotensin I pressor responses in vivo. J Pharmacol Exp Ther. 1981 Mar;216(3):552–557. [PubMed] [Google Scholar]
  7. Hall J. E., Guyton A. C., Smith M. J., Jr, Coleman T. G. Chronic blockade of angiotensin II formation during sodium deprivation. Am J Physiol. 1979 Dec;237(6):F424–F432. doi: 10.1152/ajprenal.1979.237.6.F424. [DOI] [PubMed] [Google Scholar]
  8. Kimbrough H. M., Jr, Vaughan E. D., Jr, Carey R. M., Ayers C. R. Effect of intrarenal angiotensin II blockade on renal function in conscious dogs. Circ Res. 1977 Feb;40(2):174–178. doi: 10.1161/01.res.40.2.174. [DOI] [PubMed] [Google Scholar]
  9. Lohmeier T. E., Kastner P. R., Smith M. J., Guyton A. C. Is aldosteronism important in the maintenance of arterial blood pressure and electrolyte balance during sodium depletion? Hypertension. 1980 Jul-Aug;2(4):497–505. doi: 10.1161/01.hyp.2.4.497. [DOI] [PubMed] [Google Scholar]
  10. Mimran A., Casellas D., Dupont M. Indirect evidence against a role of the kinin system in the renal hemodynamic effect of captopril in the rat. Kidney Int. 1980 Dec;18(6):746–753. doi: 10.1038/ki.1980.193. [DOI] [PubMed] [Google Scholar]
  11. Mimran A., Guiod L., Hollenberg N. K. The role of angiotensin in the cardiovascular and renal response to salt restriction. Kidney Int. 1974 May;5(5):348–355. doi: 10.1038/ki.1974.50. [DOI] [PubMed] [Google Scholar]
  12. Morimoto S., Abe R., Fukuhara A., Tanaka K., Yamamoto K. Effect of sodium restriction on plasma renin activity and renin granules in rat kidney. Am J Physiol. 1979 Nov;237(5):F367–F371. doi: 10.1152/ajprenal.1979.237.5.F367. [DOI] [PubMed] [Google Scholar]
  13. STRAUSS M. B., LAMDIN E., SMITH W. P., BLEIFER D. J. Surfeit and deficit of sodium; a kinetic concept of sodium excretion. AMA Arch Intern Med. 1958 Oct;102(4):527–536. doi: 10.1001/archinte.1958.00260210013003. [DOI] [PubMed] [Google Scholar]
  14. Schiffrin E. L., Genest J. Mechanism of captopril-induced drinking. Am J Physiol. 1982 Jan;242(1):R136–R140. doi: 10.1152/ajpregu.1982.242.1.R136. [DOI] [PubMed] [Google Scholar]
  15. Stahl R. A., Attallah A. A., Bloch D. L., Lee J. B. Stimulation of rabbit renal PGE2 biosynthesis by dietary sodium restriction. Am J Physiol. 1979 Nov;237(5):F344–F349. doi: 10.1152/ajprenal.1979.237.5.F344. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Clinical Pharmacology are provided here courtesy of British Pharmacological Society

RESOURCES