Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1996 Dec 15;24(24):5021–5025. doi: 10.1093/nar/24.24.5021

Selective amplification of RNA utilizing the nucleotide analog dITP and Thermus thermophilus DNA polymerase.

T Auer 1, J J Sninsky 1, D H Gelfand 1, T W Myers 1
PMCID: PMC146350  PMID: 9016675

Abstract

The ability to selectively amplify RNA in the presence of genomic DNA of analogous sequence is cumbersome and requires implementation of critical controls for genes lacking introns. The convenient approaches of either designing oligonucleotide primers at the splice junction or differentiating the target sequence based on the size difference obtained by the presence of the intron are not possible. Our strategy for the selective amplification of RNA targets is based on the enzymology of a single thermostable DNA polymerase and the ability to modulate the strand separation temperature requirements for PCR amplification. Following reverse transcription of the RNA by recombinant Thermus thermophilus DNA polymerase (rTth pol), the resulting RNAxDNA hybrid is digested by the RNase H activity of rTth pol, allowing the PCR primer to hybridize and initiate second-strand cDNA synthesis. Substitution of one or more conventional nucleotides with nucleotide analogs that decrease base stacking interactions and/or hydrogen bonding (e.g. hydroxymethyldUTP or dITP) during the first- and second-strand cDNA synthesis step reduces the strand separation temperature of the resultant DNAxDNA duplex. Alteration of the thermal cycling parameters of the subsequent PCR amplification, such that the strand separation temperature is below that required for denaturation of genomic duplex DNA composed of standard nucleotides, prevents the genomic DNA from being denatured and therefore amplified.

Full Text

The Full Text of this article is available as a PDF (155.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Auer T., Landre P. A., Myers T. W. Properties of the 5'-->3' exonuclease/ribonuclease H activity of Thermus thermophilus DNA polymerase. Biochemistry. 1995 Apr 18;34(15):4994–5002. doi: 10.1021/bi00015a010. [DOI] [PubMed] [Google Scholar]
  2. Becker-André M., Hahlbrock K. Absolute mRNA quantification using the polymerase chain reaction (PCR). A novel approach by a PCR aided transcript titration assay (PATTY). Nucleic Acids Res. 1989 Nov 25;17(22):9437–9446. doi: 10.1093/nar/17.22.9437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Buchman G. W., Schuster D. M., Rashtchian A. Selective RNA amplification: a novel method using dUMP-containing primers and uracil DNA glycosylase. PCR Methods Appl. 1993 Aug;3(1):28–31. doi: 10.1101/gr.3.1.28. [DOI] [PubMed] [Google Scholar]
  4. Butera S. T., Roberts B. D., Folks T. M. Regulation of HIV-1 expression by cytokine networks in a CD4+ model of chronic infection. J Immunol. 1993 Jan 15;150(2):625–634. [PubMed] [Google Scholar]
  5. Butera S. T., Roberts B. D., Lam L., Hodge T., Folks T. M. Human immunodeficiency virus type 1 RNA expression by four chronically infected cell lines indicates multiple mechanisms of latency. J Virol. 1994 Apr;68(4):2726–2730. doi: 10.1128/jvi.68.4.2726-2730.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gama R. E., Hughes P. J., Bruce C. B., Stanway G. Polymerase chain reaction amplification of rhinovirus nucleic acids from clinical material. Nucleic Acids Res. 1988 Oct 11;16(19):9346–9346. doi: 10.1093/nar/16.19.9346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gibbs R. A., Nguyen P. N., McBride L. J., Koepf S. M., Caskey C. T. Identification of mutations leading to the Lesch-Nyhan syndrome by automated direct DNA sequencing of in vitro amplified cDNA. Proc Natl Acad Sci U S A. 1989 Mar;86(6):1919–1923. doi: 10.1073/pnas.86.6.1919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Grillo M., Margolis F. L. Use of reverse transcriptase polymerase chain reaction to monitor expression of intronless genes. Biotechniques. 1990 Sep;9(3):262, 264, 266-8. [PubMed] [Google Scholar]
  9. Hart C., Chang S. Y., Kwok S., Sninsky J., Ou C. Y., Schochetman G. A replication-deficient HIV-1 DNA used for quantitation of the polymerase chain reaction (PCR). Nucleic Acids Res. 1990 Jul 11;18(13):4029–4030. doi: 10.1093/nar/18.13.4029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hart C., Schochetman G., Spira T., Lifson A., Moore J., Galphin J., Sninsky J., Ou C. Y. Direct detection of HIV RNA expression in seropositive subjects. Lancet. 1988 Sep 10;2(8611):596–599. doi: 10.1016/s0140-6736(88)90639-3. [DOI] [PubMed] [Google Scholar]
  11. Hawkins J. D. A survey on intron and exon lengths. Nucleic Acids Res. 1988 Nov 11;16(21):9893–9908. doi: 10.1093/nar/16.21.9893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Holland P. M., Abramson R. D., Watson R., Gelfand D. H. Detection of specific polymerase chain reaction product by utilizing the 5'----3' exonuclease activity of Thermus aquaticus DNA polymerase. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7276–7280. doi: 10.1073/pnas.88.16.7276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Imboden P., Burkart T., Schopfer K. Simultaneous detection of DNA and RNA by differential polymerase chain reaction (DIFF-PCR). PCR Methods Appl. 1993 Aug;3(1):23–27. doi: 10.1101/gr.3.1.23. [DOI] [PubMed] [Google Scholar]
  14. Karran P., Lindahl T. Hypoxanthine in deoxyribonucleic acid: generation by heat-induced hydrolysis of adenine residues and release in free form by a deoxyribonucleic acid glycosylase from calf thymus. Biochemistry. 1980 Dec 23;19(26):6005–6011. doi: 10.1021/bi00567a010. [DOI] [PubMed] [Google Scholar]
  15. Kawasaki E. S., Clark S. S., Coyne M. Y., Smith S. D., Champlin R., Witte O. N., McCormick F. P. Diagnosis of chronic myeloid and acute lymphocytic leukemias by detection of leukemia-specific mRNA sequences amplified in vitro. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5698–5702. doi: 10.1073/pnas.85.15.5698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kwok S., Higuchi R. Avoiding false positives with PCR. Nature. 1989 May 18;339(6221):237–238. doi: 10.1038/339237a0. [DOI] [PubMed] [Google Scholar]
  17. Levy D. D., Teebor G. W. Site directed substitution of 5-hydroxymethyluracil for thymine in replicating phi X-174am3 DNA via synthesis of 5-hydroxymethyl-2'-deoxyuridine-5'-triphosphate. Nucleic Acids Res. 1991 Jun 25;19(12):3337–3343. doi: 10.1093/nar/19.12.3337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Longo M. C., Berninger M. S., Hartley J. L. Use of uracil DNA glycosylase to control carry-over contamination in polymerase chain reactions. Gene. 1990 Sep 1;93(1):125–128. doi: 10.1016/0378-1119(90)90145-h. [DOI] [PubMed] [Google Scholar]
  19. Menon R. S., Chang Y. F., St Clair J., Ham R. G. RT-PCR artifacts from processed pseudogenes. PCR Methods Appl. 1991 Aug;1(1):70–71. doi: 10.1101/gr.1.1.70. [DOI] [PubMed] [Google Scholar]
  20. Mulder J., McKinney N., Christopherson C., Sninsky J., Greenfield L., Kwok S. Rapid and simple PCR assay for quantitation of human immunodeficiency virus type 1 RNA in plasma: application to acute retroviral infection. J Clin Microbiol. 1994 Feb;32(2):292–300. doi: 10.1128/jcm.32.2.292-300.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Myers T. W., Gelfand D. H. Reverse transcription and DNA amplification by a Thermus thermophilus DNA polymerase. Biochemistry. 1991 Aug 6;30(31):7661–7666. doi: 10.1021/bi00245a001. [DOI] [PubMed] [Google Scholar]
  22. Rappolee D. A., Mark D., Banda M. J., Werb Z. Wound macrophages express TGF-alpha and other growth factors in vivo: analysis by mRNA phenotyping. Science. 1988 Aug 5;241(4866):708–712. doi: 10.1126/science.3041594. [DOI] [PubMed] [Google Scholar]
  23. Shuldiner A. R., Nirula A., Roth J. RNA template-specific polymerase chain reaction (RS-PCR): a novel strategy to reduce dramatically false positives. Gene. 1990 Jul 2;91(1):139–142. doi: 10.1016/0378-1119(90)90176-r. [DOI] [PubMed] [Google Scholar]
  24. Spee J. H., de Vos W. M., Kuipers O. P. Efficient random mutagenesis method with adjustable mutation frequency by use of PCR and dITP. Nucleic Acids Res. 1993 Feb 11;21(3):777–778. doi: 10.1093/nar/21.3.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Todd J. A., Bell J. I., McDevitt H. O. HLA-DQ beta gene contributes to susceptibility and resistance to insulin-dependent diabetes mellitus. Nature. 1987 Oct 15;329(6140):599–604. doi: 10.1038/329599a0. [DOI] [PubMed] [Google Scholar]
  26. Tong J., Bendahhou S., Chen H., Agnew W. S. A simplified method for single-cell RT-PCR that can detect and distinguish genomic DNA and mRNA transcripts. Nucleic Acids Res. 1994 Aug 11;22(15):3253–3254. doi: 10.1093/nar/22.15.3253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Veres G., Gibbs R. A., Scherer S. E., Caskey C. T. The molecular basis of the sparse fur mouse mutation. Science. 1987 Jul 24;237(4813):415–417. doi: 10.1126/science.3603027. [DOI] [PubMed] [Google Scholar]
  28. Wang A. M., Doyle M. V., Mark D. F. Quantitation of mRNA by the polymerase chain reaction. Proc Natl Acad Sci U S A. 1989 Dec;86(24):9717–9721. doi: 10.1073/pnas.86.24.9717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Warren R. A. Modified bases in bacteriophage DNAs. Annu Rev Microbiol. 1980;34:137–158. doi: 10.1146/annurev.mi.34.100180.001033. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES