Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1996 Dec 15;24(24):4902–4909. doi: 10.1093/nar/24.24.4902

Variegated expression of a globin transgene correlates with chromatin accessibility but not methylation status.

D Garrick 1, H Sutherland 1, G Robertson 1, E Whitelaw 1
PMCID: PMC146354  PMID: 9016659

Abstract

There are now many mammalian examples in which single cell assays of transgene activity have revealed variegated patterns of expression. We have previously reported that transgenes in which globin regulatory elements drive the lacZ reporter gene exhibit variegated expression patterns in mouse erythrocytes, with transgene activity detectable in only a sub-population of circulating erythroid cells. In order to elucidate the molecular mechanism responsible for variegated expression in this system, we have compared the chromatin structure and methylation status of the transgene locus in expressing and non-expressing populations of erythrocytes. We find that there is a difference in the chromatin conformation of the transgene locus between the two states. Relative to active transgenes, transgene loci which have been silenced exhibit a reduced sensitivity to general digestion by DNase I, as well as a failure to establish a transgene-specific DNase I hypersensitive site, suggesting that silenced transgenes are situated within less accessible chromatin structures. Surprisingly, the restrictive chromatin structure observed at silenced transgene loci did not correlate with increased methylation, with transgenes from both active and inactive loci appearing largely unmethylated following analysis with methylation-sensitive restriction enzymes and by sequencing PCR products derived from bisulphite-converted genomic DNA.

Full Text

The Full Text of this article is available as a PDF (287.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Becker P. B., Ruppert S., Schütz G. Genomic footprinting reveals cell type-specific DNA binding of ubiquitous factors. Cell. 1987 Nov 6;51(3):435–443. doi: 10.1016/0092-8674(87)90639-8. [DOI] [PubMed] [Google Scholar]
  2. Bradl M., Larue L., Mintz B. Clonal coat color variation due to a transforming gene expressed in melanocytes of transgenic mice. Proc Natl Acad Sci U S A. 1991 Aug 1;88(15):6447–6451. doi: 10.1073/pnas.88.15.6447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brotherton T. W., Chui D. H., Gauldie J., Patterson M. Hemoglobin ontogeny during normal mouse fetal development. Proc Natl Acad Sci U S A. 1979 Jun;76(6):2853–2857. doi: 10.1073/pnas.76.6.2853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Buratowski S. The basics of basal transcription by RNA polymerase II. Cell. 1994 Apr 8;77(1):1–3. doi: 10.1016/0092-8674(94)90226-7. [DOI] [PubMed] [Google Scholar]
  5. Buschhausen G., Graessmann M., Graessmann A. Inhibition of herpes simplex thymidine kinase gene expression by DNA methylation is an indirect effect. Nucleic Acids Res. 1985 Aug 12;13(15):5503–5513. doi: 10.1093/nar/13.15.5503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Buschhausen G., Wittig B., Graessmann M., Graessmann A. Chromatin structure is required to block transcription of the methylated herpes simplex virus thymidine kinase gene. Proc Natl Acad Sci U S A. 1987 Mar;84(5):1177–1181. doi: 10.1073/pnas.84.5.1177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cedar H. DNA methylation and gene activity. Cell. 1988 Apr 8;53(1):3–4. doi: 10.1016/0092-8674(88)90479-5. [DOI] [PubMed] [Google Scholar]
  8. Clark S. J., Harrison J., Frommer M. CpNpG methylation in mammalian cells. Nat Genet. 1995 May;10(1):20–27. doi: 10.1038/ng0595-20. [DOI] [PubMed] [Google Scholar]
  9. Clark S. J., Harrison J., Paul C. L., Frommer M. High sensitivity mapping of methylated cytosines. Nucleic Acids Res. 1994 Aug 11;22(15):2990–2997. doi: 10.1093/nar/22.15.2990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Comb M., Goodman H. M. CpG methylation inhibits proenkephalin gene expression and binding of the transcription factor AP-2. Nucleic Acids Res. 1990 Jul 11;18(13):3975–3982. doi: 10.1093/nar/18.13.3975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Das O. P., Messing J. Variegated phenotype and developmental methylation changes of a maize allele originating from epimutation. Genetics. 1994 Mar;136(3):1121–1141. doi: 10.1093/genetics/136.3.1121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Eissenberg J. C. Position effect variegation in Drosophila: towards a genetics of chromatin assembly. Bioessays. 1989 Jul;11(1):14–17. doi: 10.1002/bies.950110105. [DOI] [PubMed] [Google Scholar]
  13. Elliott J. I., Festenstein R., Tolaini M., Kioussis D. Random activation of a transgene under the control of a hybrid hCD2 locus control region/Ig enhancer regulatory element. EMBO J. 1995 Feb 1;14(3):575–584. doi: 10.1002/j.1460-2075.1995.tb07033.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Festenstein R., Tolaini M., Corbella P., Mamalaki C., Parrington J., Fox M., Miliou A., Jones M., Kioussis D. Locus control region function and heterochromatin-induced position effect variegation. Science. 1996 Feb 23;271(5252):1123–1125. doi: 10.1126/science.271.5252.1123. [DOI] [PubMed] [Google Scholar]
  15. Hermann R., Hoeveler A., Doerfler W. Sequence-specific methylation in a downstream region of the late E2A promoter of adenovirus type 2 DNA prevents protein binding. J Mol Biol. 1989 Nov 20;210(2):411–415. doi: 10.1016/0022-2836(89)90340-9. [DOI] [PubMed] [Google Scholar]
  16. Higgs D. R., Wood W. G., Jarman A. P., Sharpe J., Lida J., Pretorius I. M., Ayyub H. A major positive regulatory region located far upstream of the human alpha-globin gene locus. Genes Dev. 1990 Sep;4(9):1588–1601. doi: 10.1101/gad.4.9.1588. [DOI] [PubMed] [Google Scholar]
  17. Höller M., Westin G., Jiricny J., Schaffner W. Sp1 transcription factor binds DNA and activates transcription even when the binding site is CpG methylated. Genes Dev. 1988 Sep;2(9):1127–1135. doi: 10.1101/gad.2.9.1127. [DOI] [PubMed] [Google Scholar]
  18. Iguchi-Ariga S. M., Schaffner W. CpG methylation of the cAMP-responsive enhancer/promoter sequence TGACGTCA abolishes specific factor binding as well as transcriptional activation. Genes Dev. 1989 May;3(5):612–619. doi: 10.1101/gad.3.5.612. [DOI] [PubMed] [Google Scholar]
  19. Jarman A. P., Wood W. G., Sharpe J. A., Gourdon G., Ayyub H., Higgs D. R. Characterization of the major regulatory element upstream of the human alpha-globin gene cluster. Mol Cell Biol. 1991 Sep;11(9):4679–4689. doi: 10.1128/mcb.11.9.4679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kennedy S., Rettinger S., Flye M. W., Ponder K. P. Experiments in transgenic mice show that hepatocytes are the source for postnatal liver growth and do not stream. Hepatology. 1995 Jul;22(1):160–168. [PubMed] [Google Scholar]
  21. Keshet I., Lieman-Hurwitz J., Cedar H. DNA methylation affects the formation of active chromatin. Cell. 1986 Feb 28;44(4):535–543. doi: 10.1016/0092-8674(86)90263-1. [DOI] [PubMed] [Google Scholar]
  22. Kovesdi I., Reichel R., Nevins J. R. Role of an adenovirus E2 promoter binding factor in E1A-mediated coordinate gene control. Proc Natl Acad Sci U S A. 1987 Apr;84(8):2180–2184. doi: 10.1073/pnas.84.8.2180. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Linn F., Heidmann I., Saedler H., Meyer P. Epigenetic changes in the expression of the maize A1 gene in Petunia hybrida: role of numbers of integrated gene copies and state of methylation. Mol Gen Genet. 1990 Jul;222(2-3):329–336. doi: 10.1007/BF00633837. [DOI] [PubMed] [Google Scholar]
  24. Martin C. C., McGowan R. Genotype-specific modifiers of transgene methylation and expression in the zebrafish, Danio rerio. Genet Res. 1995 Feb;65(1):21–28. doi: 10.1017/s0016672300032973. [DOI] [PubMed] [Google Scholar]
  25. McGowan R., Campbell R., Peterson A., Sapienza C. Cellular mosaicism in the methylation and expression of hemizygous loci in the mouse. Genes Dev. 1989 Nov;3(11):1669–1676. doi: 10.1101/gad.3.11.1669. [DOI] [PubMed] [Google Scholar]
  26. Mintz B., Bradl M. Mosaic expression of a tyrosinase fusion gene in albino mice yields a heritable striped coat color pattern in transgenic homozygotes. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9643–9647. doi: 10.1073/pnas.88.21.9643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Perry W. L., Hustad C. M., Swing D. A., Jenkins N. A., Copeland N. G. A transgenic mouse assay for agouti protein activity. Genetics. 1995 May;140(1):267–274. doi: 10.1093/genetics/140.1.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Pravtcheva D. D., Wise T. L., Ensor N. J., Ruddle F. H. Mosaic expression of an Hprt transgene integrated in a region of Y heterochromatin. J Exp Zool. 1994 May 1;268(6):452–468. doi: 10.1002/jez.1402680606. [DOI] [PubMed] [Google Scholar]
  29. Razin A., Cedar H. DNA methylation and gene expression. Microbiol Rev. 1991 Sep;55(3):451–458. doi: 10.1128/mr.55.3.451-458.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Robertson G., Garrick D., Wilson M., Martin D. I., Whitelaw E. Age-dependent silencing of globin transgenes in the mouse. Nucleic Acids Res. 1996 Apr 15;24(8):1465–1471. doi: 10.1093/nar/24.8.1465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Robertson G., Garrick D., Wu W., Kearns M., Martin D., Whitelaw E. Position-dependent variegation of globin transgene expression in mice. Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5371–5375. doi: 10.1073/pnas.92.12.5371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Rubin D. C., Ong D. E., Gordon J. I. Cellular differentiation in the emerging fetal rat small intestinal epithelium: mosaic patterns of gene expression. Proc Natl Acad Sci U S A. 1989 Feb;86(4):1278–1282. doi: 10.1073/pnas.86.4.1278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Schultz J. Variegation in Drosophila and the Inert Chromosome Regions. Proc Natl Acad Sci U S A. 1936 Jan;22(1):27–33. doi: 10.1073/pnas.22.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Smith R. D., Yu J., Annunziato A., Seale R. L. beta-Globin gene family in murine erythroleukemia cells resides within two chromatin domains differing in higher order structure. Biochemistry. 1984 Jun 19;23(13):2970–2976. doi: 10.1021/bi00308a019. [DOI] [PubMed] [Google Scholar]
  35. Sweetser D. A., Hauft S. M., Hoppe P. C., Birkenmeier E. H., Gordon J. I. Transgenic mice containing intestinal fatty acid-binding protein-human growth hormone fusion genes exhibit correct regional and cell-specific expression of the reporter gene in their small intestine. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9611–9615. doi: 10.1073/pnas.85.24.9611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Tartof K. D., Hobbs C., Jones M. A structural basis for variegating position effects. Cell. 1984 Jul;37(3):869–878. doi: 10.1016/0092-8674(84)90422-7. [DOI] [PubMed] [Google Scholar]
  37. Thorey I. S., Meneses J. J., Neznanov N., Kulesh D. A., Pedersen R. A., Oshima R. G. Embryonic expression of human keratin 18 and K18-beta-galactosidase fusion genes in transgenic mice. Dev Biol. 1993 Dec;160(2):519–534. doi: 10.1006/dbio.1993.1326. [DOI] [PubMed] [Google Scholar]
  38. Wallrath L. L., Elgin S. C. Position effect variegation in Drosophila is associated with an altered chromatin structure. Genes Dev. 1995 May 15;9(10):1263–1277. doi: 10.1101/gad.9.10.1263. [DOI] [PubMed] [Google Scholar]
  39. Watt F., Molloy P. L. Cytosine methylation prevents binding to DNA of a HeLa cell transcription factor required for optimal expression of the adenovirus major late promoter. Genes Dev. 1988 Sep;2(9):1136–1143. doi: 10.1101/gad.2.9.1136. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES