Skip to main content
British Journal of Clinical Pharmacology logoLink to British Journal of Clinical Pharmacology
. 1984 Sep;18(3):369–375. doi: 10.1111/j.1365-2125.1984.tb02478.x

Metabolic effects of high dose amiloride and spironolactone: a comparative study in normal subjects.

J A Millar, R Fraser, P Mason, B Leckie, A M Cumming, J I Robertson
PMCID: PMC1463638  PMID: 6386025

Abstract

Amiloride (75 mg daily) and spironolactone (300 mg daily) were given to five normal subjects for 7 days in order to compare metabolic effects at maximal doses. Blood pressure, body weight, Na+ and K+ balance, and plasma concentrations of Na+, K+, active and total renin, angiotensin II, aldosterone, 11-deoxycorticosterone (DOC), 18-hydroxydeoxycorticosterone (18-OH DOC), corticosterone (B), 18-hydroxycorticosterone (18-OH B) and cortisol were measured before and on each day of treatment. Natriuresis and K+ retention were significantly greater with amiloride. Plasma K+ increased from 4.1 +/- 0.2 to 4.9 +/- 0.2 mmol/l (mean +/- s.d.) on amiloride and from 4.0 +/- 0.2 to 4.4 +/- 0.2 mmol/l with spironolactone. Stimulation of renin, angiotensin II, aldosterone and 18-OH B occurred with both drugs but was greater with amiloride in each case. A transient decrease in systolic and diastolic blood pressure was observed after 2 days of spironolactone treatment but not with amiloride. The slope of the regression of aldosterone on angiotensin II during spironolactone treatment was less than that with amiloride, consistent with partial blockade of aldosterone synthesis by spironolactone. These data suggest that the maximum metabolic effects of amiloride exceed those of spironolactone.

Full text

PDF
369

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abshagen U., Spörl S., Schöneshöfer M., L'age M., Oelkers W. Interference of spironolactone therapy with adrenal steroid metabolism in secondary hyperaldosteronism. Klin Wochenschr. 1978 Apr 1;56(7):341–349. doi: 10.1007/BF01477394. [DOI] [PubMed] [Google Scholar]
  2. Aupetit B., Duchier J., Legrand J. C. Action des spironolactones sur la synthèse de l'aldostérone et sur le métabolisme surrénalien. Ann Endocrinol (Paris) 1978;39(5):355–372. [PubMed] [Google Scholar]
  3. Bangham D. R., Robertson I., Robertson J. I., Robinson C. J., Tree M. An international collaborative study of renin assay: establishment of the international reference preparation of human renin. Clin Sci Mol Med Suppl. 1975 Jun;2:135a–159s. doi: 10.1042/cs048135s. [DOI] [PubMed] [Google Scholar]
  4. Bishop W. H., Henke L., Christopher J. P., Millar D. B. Photodestruction of acetylcholinesterase. Proc Natl Acad Sci U S A. 1980 Apr;77(4):1980–1982. doi: 10.1073/pnas.77.4.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bull M. B., Laragh J. H. Amiloride. A potassium-sparing natriuretic agent. Circulation. 1968 Jan;37(1):45–53. doi: 10.1161/01.cir.37.1.45. [DOI] [PubMed] [Google Scholar]
  6. Cheng S. C., Suzuki K., Sadee W., Harding B. W. Effects of spironolactone, canrenone and canrenoate-K on cytochrome P450, and 11beta- and 18-hydroxylation in bovine and human adrenal cortical mitochondria. Endocrinology. 1976 Oct;99(4):1097–1106. doi: 10.1210/endo-99-4-1097. [DOI] [PubMed] [Google Scholar]
  7. Conn J. W., Hinerman D. L. Spironolactone-induced inhibition of aldosterone biosynthesis in primary aldosteronism: morphological and functional studies. Metabolism. 1977 Dec;26(12):1293–1307. doi: 10.1016/0026-0495(77)90026-9. [DOI] [PubMed] [Google Scholar]
  8. Davis C. W., Finn A. L. Sodium transport inhibition by amiloride reduces basolateral membrane potassium conductance in tight epithelia. Science. 1982 Apr 30;216(4545):525–527. doi: 10.1126/science.7071599. [DOI] [PubMed] [Google Scholar]
  9. Düsterdieck G., McElwee G. Estimation of angiotensin II concentration in human plasma by radioimmunoassay. Some applications to physiological and clinical states. Eur J Clin Invest. 1971 Nov;2(1):32–38. doi: 10.1111/j.1365-2362.1971.tb00565.x. [DOI] [PubMed] [Google Scholar]
  10. Erbler H. C. Stimulation of aldosterone production in vitro and its inhibition by spironolactone. Naunyn Schmiedebergs Arch Pharmacol. 1972;273(4):366–375. doi: 10.1007/BF00499670. [DOI] [PubMed] [Google Scholar]
  11. Kim K. S., Morimoto S., Uchida K., Miyamori I., Miyamoto M., Takeda R. Reduced response of plasma aldosterone to acute ACTH stimulation during long-term treatment with spironolactone in essential hypertension. Horm Res. 1979;11(1):4–11. doi: 10.1159/000179032. [DOI] [PubMed] [Google Scholar]
  12. Kremer D., Boddy K., Brown J. J., Davies D. L., Fraser R., Lever A. F., Morton J. J., Robertson J. I. Amiloride in the treatment of primary hyperaldosteronism and essential hypertension. Clin Endocrinol (Oxf) 1977 Aug;7(2):151–157. doi: 10.1111/j.1365-2265.1977.tb01307.x. [DOI] [PubMed] [Google Scholar]
  13. Lant A. F., Smith A. J., Wilson G. M. Clinical evaluation of amiloride, a potassium-sparing diuretic. Clin Pharmacol Ther. 1969 Jan-Feb;10(1):50–63. doi: 10.1002/cpt196910150. [DOI] [PubMed] [Google Scholar]
  14. Mason P. A., Fraser R. Estimation of aldosterone, 11-deoxycorticosterone, 18-hydroxy-11-deoxy-corticosterone, corticosterone, cortisol and 11-deoxycortisol in human plasma by gas-liquid chromatography with electron capture detection. J Endocrinol. 1975 Feb;64(2):277–288. doi: 10.1677/joe.0.0640277. [DOI] [PubMed] [Google Scholar]
  15. McInnes G. T., Perkins R. M., Shelton J. R., Harrison I. R. Spironolactone dose-response relationships in healthy subjects. Br J Clin Pharmacol. 1982 Apr;13(4):513–518. doi: 10.1111/j.1365-2125.1982.tb01413.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. McInnes G. T. Relative potency of amiloride and spironolactone in healthy man. Clin Pharmacol Ther. 1982 Apr;31(4):472–477. doi: 10.1038/clpt.1982.62. [DOI] [PubMed] [Google Scholar]
  17. Millar J. A., Hammat M. T., Johnston C. I. Effect of inhibition of converting enzyme on inactive renin in the circulation of salt-replete and salt-deplete normal subjects. J Endocrinol. 1980 Aug;86(2):329–335. doi: 10.1677/joe.0.0860329. [DOI] [PubMed] [Google Scholar]
  18. Millar J. A., Leckie B. J., Morton J. J., Jordan J., Tree M. A microassay for active and total renin concentration in human plasma based on antibody trapping. Clin Chim Acta. 1980 Feb 14;101(1):5–15. doi: 10.1016/0009-8981(80)90050-9. [DOI] [PubMed] [Google Scholar]
  19. Millar J. A. Plasma active and inactive renin in man during infusion of angiotensin II with and without prior administration of nifedipine. Clin Exp Hypertens A. 1982;4(11-12):2415–2424. doi: 10.3109/10641968209062399. [DOI] [PubMed] [Google Scholar]
  20. Ramsay L. E., Hettiarachchi J., Fraser R., Morton J. J. Amiloride, spironolactone, and potassium chloride in thiazide-treated hypertensive patients. Clin Pharmacol Ther. 1980 Apr;27(4):533–543. doi: 10.1038/clpt.1980.75. [DOI] [PubMed] [Google Scholar]
  21. Sakauye C., Feldman D. Agonist and antimineralocorticoid activities of spirolactones. Am J Physiol. 1976 Jul;231(1):93–97. doi: 10.1152/ajplegacy.1976.231.1.93. [DOI] [PubMed] [Google Scholar]
  22. Tsai R., Morris D. J. The effect of spironolactone on the hepatic metabolism of aldosterone in male rats. Endocrinology. 1978 Oct;103(4):1239–1244. doi: 10.1210/endo-103-4-1239. [DOI] [PubMed] [Google Scholar]
  23. Vaughan E. D., Jr, Carey R. M., Peach M. J., Ackerly J. A., Ayers C. R. The renin response to diuretic therapyl A limitation of antihypertensive potential. Circ Res. 1978 Mar;42(3):376–381. doi: 10.1161/01.res.42.3.376. [DOI] [PubMed] [Google Scholar]
  24. Wilson A., Mason P. A., Fraser R. Estimation of 18-hydroxycorticosterone concentration in human peripheral plasma by gas-liquid chromatography with electron capture detection. J Steroid Biochem. 1976 Aug;7:611–613. doi: 10.1016/0022-4731(76)90085-6. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Clinical Pharmacology are provided here courtesy of British Pharmacological Society

RESOURCES