Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Jan 1;25(1):188–191. doi: 10.1093/nar/25.1.188

Expansion of the 16S and 23S ribosomal RNA mutation databases (16SMDB and 23SMDB).

K L Triman 1, B J Adams 1
PMCID: PMC146368  PMID: 9016533

Abstract

The Ribosomal RNA Mutation Databases (16SMDB and 23SMDB) provide lists of mutated positions in 16S and 23S ribosomal RNA from Escherichia coli and the identity of each alteration. Information provided for each mutation includes: (i) a brief description of the phenotype(s) associated with each mutation; (ii) whether a mutant phenotype has been detected by in vivo or in vitro methods; and (iii) relevant literature citations. The databases are available via ftp and on the World Wide Web. Expansion of the databases to include information about mutations isolated in organisms other than E.coli is currently in progress.

Full Text

The Full Text of this article is available as a PDF (29.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blanc H., Wright C. T., Bibb M. J., Wallace D. C., Clayton D. A. Mitochondrial DNA of chloramphenicol-resistant mouse cells contains a single nucleotide change in the region encoding the 3' end of the large ribosomal RNA. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3789–3793. doi: 10.1073/pnas.78.6.3789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cseplö A., Etzold T., Schell J., Schreier P. H. Point mutations in the 23 S rRNA genes of four lincomycin resistant Nicotiana plumbaginifolia mutants could provide new selectable markers for chloroplast transformation. Mol Gen Genet. 1988 Oct;214(2):295–299. doi: 10.1007/BF00337724. [DOI] [PubMed] [Google Scholar]
  3. Dam M., Douthwaite S., Tenson T., Mankin A. S. Mutations in domain II of 23 S rRNA facilitate translation of a 23 S rRNA-encoded pentapeptide conferring erythromycin resistance. J Mol Biol. 1996 May 31;259(1):1–6. doi: 10.1006/jmbi.1996.0296. [DOI] [PubMed] [Google Scholar]
  4. Dujon B. Sequence of the intron and flanking exons of the mitochondrial 21S rRNA gene of yeast strains having different alleles at the omega and rib-1 loci. Cell. 1980 May;20(1):185–197. doi: 10.1016/0092-8674(80)90246-9. [DOI] [PubMed] [Google Scholar]
  5. Ericson G., Minchew P., Wollenzien P. Structural changes in base-paired region 28 in 16 S rRNA close to the decoding region of the 30 S ribosomal subunit are correlated to changes in tRNA binding. J Mol Biol. 1995 Jul 21;250(4):407–419. doi: 10.1006/jmbi.1995.0386. [DOI] [PubMed] [Google Scholar]
  6. Ettayebi M., Prasad S. M., Morgan E. A. Chloramphenicol-erythromycin resistance mutations in a 23S rRNA gene of Escherichia coli. J Bacteriol. 1985 May;162(2):551–557. doi: 10.1128/jb.162.2.551-557.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Firpo M. A., Connelly M. B., Goss D. J., Dahlberg A. E. Mutations at two invariant nucleotides in the 3'-minor domain of Escherichia coli 16 S rRNA affecting translational initiation and initiation factor 3 function. J Biol Chem. 1996 Mar 1;271(9):4693–4698. doi: 10.1074/jbc.271.9.4693. [DOI] [PubMed] [Google Scholar]
  8. Gauthier A., Turmel M., Lemieux C. Mapping of chloroplast mutations conferring resistance to antibiotics in Chlamydomonas: evidence for a novel site of streptomycin resistance in the small subunit rRNA. Mol Gen Genet. 1988 Oct;214(2):192–197. doi: 10.1007/BF00337710. [DOI] [PubMed] [Google Scholar]
  9. Gregory S. T., Dahlberg A. E. Nonsense suppressor and antisuppressor mutations at the 1409-1491 base pair in the decoding region of Escherichia coli 16S rRNA. Nucleic Acids Res. 1995 Nov 11;23(21):4234–4238. doi: 10.1093/nar/23.21.4234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Harris E. H., Burkhart B. D., Gillham N. W., Boynton J. E. Antibiotic resistance mutations in the chloroplast 16S and 23S rRNA genes of Chlamydomonas reinhardtii: correlation of genetic and physical maps of the chloroplast genome. Genetics. 1989 Oct;123(2):281–292. doi: 10.1093/genetics/123.2.281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hummel H., Böck A. 23S ribosomal RNA mutations in halobacteria conferring resistance to the anti-80S ribosome targeted antibiotic anisomycin. Nucleic Acids Res. 1987 Mar 25;15(6):2431–2443. doi: 10.1093/nar/15.6.2431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hummel H., Böck A. Thiostrepton resistance mutations in the gene for 23S ribosomal RNA of halobacteria. Biochimie. 1987 Aug;69(8):857–861. doi: 10.1016/0300-9084(87)90212-4. [DOI] [PubMed] [Google Scholar]
  13. Kearsey S. E., Craig I. W. Altered ribosomal RNA genes in mitochondria from mammalian cells with chloramphenicol resistance. Nature. 1981 Apr 16;290(5807):607–608. doi: 10.1038/290607a0. [DOI] [PubMed] [Google Scholar]
  14. Melançon P., Lemieux C., Brakier-Gingras L. A mutation in the 530 loop of Escherichia coli 16S ribosomal RNA causes resistance to streptomycin. Nucleic Acids Res. 1988 Oct 25;16(20):9631–9639. doi: 10.1093/nar/16.20.9631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Nishi K., Schnier J. A temperature-sensitive mutant in the gene rplX for ribosomal protein L24 and its suppression by spontaneous mutations in a 23S rRNA gene of Escherichia coli. EMBO J. 1986 Jun;5(6):1373–1376. doi: 10.1002/j.1460-2075.1986.tb04369.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. O'Connor M., Brunelli C. A., Firpo M. A., Gregory S. T., Lieberman K. R., Lodmell J. S., Moine H., Van Ryk D. I., Dahlberg A. E. Genetic probes of ribosomal RNA function. Biochem Cell Biol. 1995 Nov-Dec;73(11-12):859–868. doi: 10.1139/o95-093. [DOI] [PubMed] [Google Scholar]
  17. O'Connor M., Dahlberg A. E. The influence of base identity and base pairing on the function of the alpha-sarcin loop of 23S rRNA. Nucleic Acids Res. 1996 Jul 15;24(14):2701–2705. doi: 10.1093/nar/24.14.2701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. O'Connor M., Göringer H. U., Dahlberg A. E. A ribosomal ambiguity mutation in the 530 loop of E. coli 16S rRNA. Nucleic Acids Res. 1992 Aug 25;20(16):4221–4227. doi: 10.1093/nar/20.16.4221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Pinard R., Payant C., Melançon P., Brakier-Gingras L. The 5' proximal helix of 16S rRNA is involved in the binding of streptomycin to the ribosome. FASEB J. 1993 Jan;7(1):173–176. doi: 10.1096/fasebj.7.1.7678560. [DOI] [PubMed] [Google Scholar]
  20. Powers T., Noller H. F. A functional pseudoknot in 16S ribosomal RNA. EMBO J. 1991 Aug;10(8):2203–2214. doi: 10.1002/j.1460-2075.1991.tb07756.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ryan P. C., Draper D. E. Detection of a key tertiary interaction in the highly conserved GTPase center of large subunit ribosomal RNA. Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):6308–6312. doi: 10.1073/pnas.88.14.6308. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Shen Z. H., Fox T. D. Substitution of an invariant nucleotide at the base of the highly conserved '530-loop' of 15S rRNA causes suppression of yeast mitochondrial ochre mutations. Nucleic Acids Res. 1989 Jun 26;17(12):4535–4539. doi: 10.1093/nar/17.12.4535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Slott E. F., Jr, Shade R. O., Lansman R. A. Sequence analysis of mitochondrial DNA in a mouse cell line resistant to chloramphenicol and oligomycin. Mol Cell Biol. 1983 Oct;3(10):1694–1702. doi: 10.1128/mcb.3.10.1694. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sor F., Fukuhara H. Erythromycin and spiramycin resistance mutations of yeast mitochondria: nature of the rib2 locus in the large ribosomal RNA gene. Nucleic Acids Res. 1984 Nov 26;12(22):8313–8318. doi: 10.1093/nar/12.22.8313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sor F., Fukuhara H. Identification of two erythromycin resistance mutations in the mitochondrial gene coding for the large ribosomal RNA in yeast. Nucleic Acids Res. 1982 Nov 11;10(21):6571–6577. doi: 10.1093/nar/10.21.6571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Triman K. L. Mutational analysis of 16S ribosomal RNA structure and function in Escherichia coli. Adv Genet. 1995;33:1–39. doi: 10.1016/s0065-2660(08)60329-6. [DOI] [PubMed] [Google Scholar]
  27. Triman K. L. The 16S ribosomal RNA mutation database (16SMDB). Nucleic Acids Res. 1996 Jan 1;24(1):166–168. doi: 10.1093/nar/24.1.166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Triman K. L. The 16S ribosomal RNA mutation database (16SMDB) Nucleic Acids Res. 1994 Sep;22(17):3563–3565. [PMC free article] [PubMed] [Google Scholar]
  29. Triman K. L. The 23S Ribosomal RNA Mutation Database (23SMDB). Nucleic Acids Res. 1996 Jan 1;24(1):169–171. doi: 10.1093/nar/24.1.169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Van Ryk D. I., Dahlberg A. E. Structural changes in the 530 loop of Escherichia coli 16S rRNA in mutants with impaired translational fidelity. Nucleic Acids Res. 1995 Sep 11;23(17):3563–3570. doi: 10.1093/nar/23.17.3563. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES