Abstract
The effect of oral doses of the beta 1-selective adrenoceptor antagonist atenolol (50 mg), the non-selective antagonist propranolol (40 mg) and placebo was investigated during exercise in a crossover comparison in six healthy but untrained subjects. Descriptors of ventilation, respiratory gas exchange, and arterialized blood lactate and glucose were obtained during steady state bicycle ergometric exercise at 20% and 60% of the subjects' previously determined maximal oxygen uptake (VO2 max). At these work intensities, the previously reported increase of respiratory exchange ratio (RER) during non-selective beta-adrenoceptor blockade was found to be trivial (placebo = 0.96 +/- 0.03 s.e. mean; propranolol = 0.97 +/- 0.01; atenolol = 0.97 +/- 0.04; 60% VO2 max, 10 min exercise) and only present during the early minutes of effort. Oxygen uptake and carbon dioxide production did not differ between treatments. Both drugs produced highly significant falls in peak expiratory flow (PEF) rates and tidal volume (VT) which were compensated by an increase in respiratory rate. PEF, 60% VO2 max: placebo = 3.8 +/- 0.3 l/s; propranolol 3.6 +/- 0.3 l/s (P less than 0.03); atenolol 3.1 +/- 0.3 l/s (P less than 0.01). VT, 60% VO2 max: placebo 2.0 +/- 0.1 l; propranolol 1.8 +/- 0.21 (P less than 0.05); atenolol 1.7 +/- 0.1 1 (P less than 0.01). Arterialized lactate was significantly elevated during work at 20% and 60% VO2 max, but rose progressively at the 60% VO2 max load. Ventilation, oxygen uptake and ventilatory equivalent for carbon dioxide also rose progressively at this workload. Ventilatory equivalent for oxygen showed no significant rise.(ABSTRACT TRUNCATED AT 250 WORDS)
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arnold A., McAuliff J. P., Colella D. F., O'Connor W. V., Brown T. G., Jr The beta-2 receptor mediated glycogenolytic responses to catecholamines in the dog. Arch Int Pharmacodyn Ther. 1968 Dec;176(2):451–457. [PubMed] [Google Scholar]
- Aström H., Vallin H. Effect of a new beta-adrenergic blocking agent, ICI 66o82, on exercise haemodynamics and airway resistance in angina pectoris. Br Heart J. 1974 Dec;36(12):1194–1200. doi: 10.1136/hrt.36.12.1194. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carswell H., Nahorski S. R. Beta-adrenoceptor heterogeneity in guinea-pig airways: comparison of functional and receptor labelling studies. Br J Pharmacol. 1983 Aug;79(4):965–971. doi: 10.1111/j.1476-5381.1983.tb10542.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clausen J. P. Circulatory adjustments to dynamic exercise and effect of physical training in normal subjects and in patients with coronary artery disease. Prog Cardiovasc Dis. 1976 May-Jun;18(6):459–495. doi: 10.1016/0033-0620(76)90012-8. [DOI] [PubMed] [Google Scholar]
- Donovan C. M., Brooks G. A. Endurance training affects lactate clearance, not lactate production. Am J Physiol. 1983 Jan;244(1):E83–E92. doi: 10.1152/ajpendo.1983.244.1.E83. [DOI] [PubMed] [Google Scholar]
- Ekblom B., Goldbarg A. N., Kilbom A., Astrand P. O. Effects of atropine and propranolol on the oxygen transport system during exercise in man. Scand J Clin Lab Invest. 1972 Sep;30(1):35–42. doi: 10.3109/00365517209081087. [DOI] [PubMed] [Google Scholar]
- Epstein S., Robinson B. F., Kahler R. L., Braunwald E. Effects of beta-adrenergic blockade on the cardiac response to maximal and submaximal exercise in man. J Clin Invest. 1965 Nov;44(11):1745–1753. doi: 10.1172/JCI105282. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Felig P., Wahren J. Fuel homeostasis in exercise. N Engl J Med. 1975 Nov 20;293(21):1078–1084. doi: 10.1056/NEJM197511202932107. [DOI] [PubMed] [Google Scholar]
- Forster H. V., Dempsey J. A., Thomson J., Vidruk E., DoPico G. A. Estimation of arterial PO2, PCO2, pH, and lactate from arterialized venous blood. J Appl Physiol. 1972 Jan;32(1):134–137. doi: 10.1152/jappl.1972.32.1.134. [DOI] [PubMed] [Google Scholar]
- Franz I. W., Lohmann F. W., Koch G. Effects of chronic antihypertensive treatment with acebutolol and pindolol on blood pressures, plasma catecholamines, and oxygen uptake at rest and during submaximal and maximal exercise. J Cardiovasc Pharmacol. 1982 Mar-Apr;4(2):180–186. doi: 10.1097/00005344-198203000-00004. [DOI] [PubMed] [Google Scholar]
- Green H. J., Hughson R. L., Orr G. W., Ranney D. A. Anaerobic threshold, blood lactate, and muscle metabolites in progressive exercise. J Appl Physiol Respir Environ Exerc Physiol. 1983 Apr;54(4):1032–1038. doi: 10.1152/jappl.1983.54.4.1032. [DOI] [PubMed] [Google Scholar]
- Hughes E. F., Turner S. C., Brooks G. A. Effects of glycogen depletion and pedaling speed on "anaerobic threshold". J Appl Physiol Respir Environ Exerc Physiol. 1982 Jun;52(6):1598–1607. doi: 10.1152/jappl.1982.52.6.1598. [DOI] [PubMed] [Google Scholar]
- Juhlin-Dannfelt A. C., Terblanche S. E., Fell R. D., Young J. C., Holloszy J. O. Effects of beta-adrenergic receptor blockade on glycogenolysis during exercise. J Appl Physiol Respir Environ Exerc Physiol. 1982 Sep;53(3):549–554. doi: 10.1152/jappl.1982.53.3.549. [DOI] [PubMed] [Google Scholar]
- Kumana C. R., Marlin G. E., Kaye C. M., Smith D. M. New approach to assessment of cardioselectivity of beta-blocking drugs. Br Med J. 1974 Nov 23;4(5942):444–447. doi: 10.1136/bmj.4.5942.444. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Loubatières A., Mariani M. M., Sorel G., Savi L. The action of beta-adrenergic blocking and stimulating agents on insulin secretion. Characterization of the type of beta receptor. Diabetologia. 1971 Jun;7(3):127–132. doi: 10.1007/BF01212541. [DOI] [PubMed] [Google Scholar]
- McDevitt D. G. The assessment of beta-adrenoceptor blocking drugs in man. Br J Clin Pharmacol. 1977 Aug;4(4):413–425. doi: 10.1111/j.1365-2125.1977.tb00756.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McLeod A. A., Brown J. E., Kitchell B. B., Sedor F. A., Kuhn C., Shand D. G., Williams R. S. Hemodynamic and metabolic responses to exercise after adrenoceptor blockade in humans. J Appl Physiol Respir Environ Exerc Physiol. 1984 Mar;56(3):716–722. doi: 10.1152/jappl.1984.56.3.716. [DOI] [PubMed] [Google Scholar]
- McLeod A. A., Brown J. E., Kuhn C., Kitchell B. B., Sedor F. A., Williams R. S., Shand D. G. Differentiation of hemodynamic, humoral and metabolic responses to beta 1- and beta 2-adrenergic stimulation in man using atenolol and propranolol. Circulation. 1983 May;67(5):1076–1084. doi: 10.1161/01.cir.67.5.1076. [DOI] [PubMed] [Google Scholar]
- Oh V. M., Kaye C. M., Warrington S. J., Taylor E. A., Wadsworth J. Studies of cardioselectivity and partial agonist activity in beta-adrenoceptor blockade comparing effects on heart rate and peak expiratory flow rate during exercise. Br J Clin Pharmacol. 1978 Feb;5(2):107–120. doi: 10.1111/j.1365-2125.1978.tb01609.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pearson S. B., Banks D. C., Patrick J. M. The effect of beta-adrenoceptor blockade on factors affecting exercise tolerance in normal man. Br J Clin Pharmacol. 1979 Aug;8(2):143–148. doi: 10.1111/j.1365-2125.1979.tb05812.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Petersen E. S., Whipp B. J., Davis J. A., Huntsman D. J., Brown H. V., Wasserman K. Effects of beta-adrenergic blockade on ventilation and gas exchange during exercise in humans. J Appl Physiol Respir Environ Exerc Physiol. 1983 May;54(5):1306–1313. doi: 10.1152/jappl.1983.54.5.1306. [DOI] [PubMed] [Google Scholar]
- Rizza R. A., Cryer P. E., Haymond M. W., Gerich J. E. Adrenergic mechanisms for the effects of epinephrine on glucose production and clearance in man. J Clin Invest. 1980 Mar;65(3):682–689. doi: 10.1172/JCI109714. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stanton H. C. Selective metabolic and cardiovascular beta receptor antagonism in the rat. Arch Int Pharmacodyn Ther. 1972 Apr;196(2):246–258. [PubMed] [Google Scholar]
- Tesch P. A., Kaiser P. Effects of beta-adrenergic blockade on O2 uptake during submaximal and maximal exercise. J Appl Physiol Respir Environ Exerc Physiol. 1983 Apr;54(4):901–905. doi: 10.1152/jappl.1983.54.4.901. [DOI] [PubMed] [Google Scholar]
- Twentyman O. P., Disley A., Gribbin H. R., Alberti K. G., Tattersfield A. E. Effect of beta-adrenergic blockade on respiratory and metabolic responses to exercise. J Appl Physiol Respir Environ Exerc Physiol. 1981 Oct;51(4):788–793. doi: 10.1152/jappl.1981.51.4.788. [DOI] [PubMed] [Google Scholar]
- Wasserman K. Breathing during exercise. N Engl J Med. 1978 Apr 6;298(14):780–785. doi: 10.1056/NEJM197804062981408. [DOI] [PubMed] [Google Scholar]
- Wasserman K. Dyspnea on exertion. Is it the heart or the lungs? JAMA. 1982 Oct 22;248(16):2039–2043. doi: 10.1001/jama.248.16.2039. [DOI] [PubMed] [Google Scholar]
- Wasserman K., Whipp B. J., Koyl S. N., Beaver W. L. Anaerobic threshold and respiratory gas exchange during exercise. J Appl Physiol. 1973 Aug;35(2):236–243. doi: 10.1152/jappl.1973.35.2.236. [DOI] [PubMed] [Google Scholar]
- Wilmore J. H., Davis J. A., Norton A. C. An automated system for assessing metabolic and respiratory function during exercise. J Appl Physiol. 1976 Apr;40(4):619–624. doi: 10.1152/jappl.1976.40.4.619. [DOI] [PubMed] [Google Scholar]
- Woods K. L., Linton S. P., Kendall M. J., Faragher E. B., Grieve R. J. Exercise responses of healthy subjects in the evaluation of cardioselectivity of beta-blockers. Eur J Clin Pharmacol. 1979 May 21;15(4):229–233. doi: 10.1007/BF00618510. [DOI] [PubMed] [Google Scholar]
