Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Jan 1;25(1):166–171. doi: 10.1093/nar/25.1.166

BTKbase, mutation database for X-linked agammaglobulinemia (XLA)

M Vihinen 1, B H Belohradsky 1, R N Haire 1, E Holinski-Feder 1, S P Kwan 1, I Lappalainen 1, H Lehväslaiho 1, T Lester 1, A Meindl 1, H D Ochs 1, J Ollila 1, I Vorechovsky 1, M Weiss 1, C I Smith 1
PMCID: PMC146405  PMID: 9016530

Abstract

X-linked agammaglobulinemia (XLA) is an immunodeficiency caused by mutations in the gene coding for Bruton's agammaglobulinemia tyrosine kinase (BTK). A database (BTKbase) of BTK mutations has been compiled and the recent update lists 368 entries from 318 unrelated families showing 228 unique molecular events. In addition to mutations the database lists also some polymorphisms and site-directed mutations. Each patient is given a unique patient identity number (PIN). Information is provided regarding the phenotype including symptoms. Mutations in all the five domains of BTK have been noticed to cause the disease, the most common event being missense mutations. The mutations appear almost uniformly throughout the molecule and frequently affect CpG sites forming arginine residues. These hot spots have generally pyrimidines 5'and purines 3'to the mutated cytosine. A decreased frequency of missense mutations was found in the TH, SH3 and the upper lobe of the kinase domain. The putative structural implications of all the missense mutations are given in the database showing 228 unique molecular events, including a novel missense mutation causing an R28C substitution as previously seen in the Xid mouse.

Full Text

The Full Text of this article is available as a PDF (89.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cheng G., Ye Z. S., Baltimore D. Binding of Bruton's tyrosine kinase to Fyn, Lyn, or Hck through a Src homology 3 domain-mediated interaction. Proc Natl Acad Sci U S A. 1994 Aug 16;91(17):8152–8155. doi: 10.1073/pnas.91.17.8152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cooper D. N., Krawczak M. The mutational spectrum of single base-pair substitutions causing human genetic disease: patterns and predictions. Hum Genet. 1990 Jun;85(1):55–74. doi: 10.1007/BF00276326. [DOI] [PubMed] [Google Scholar]
  3. Cooper D. N., Youssoufian H. The CpG dinucleotide and human genetic disease. Hum Genet. 1988 Feb;78(2):151–155. doi: 10.1007/BF00278187. [DOI] [PubMed] [Google Scholar]
  4. Coulondre C., Miller J. H., Farabaugh P. J., Gilbert W. Molecular basis of base substitution hotspots in Escherichia coli. Nature. 1978 Aug 24;274(5673):775–780. doi: 10.1038/274775a0. [DOI] [PubMed] [Google Scholar]
  5. Hagemann T. L., Chen Y., Rosen F. S., Kwan S. P. Genomic organization of the Btk gene and exon scanning for mutations in patients with X-linked agammaglobulinemia. Hum Mol Genet. 1994 Oct;3(10):1743–1749. doi: 10.1093/hmg/3.10.1743. [DOI] [PubMed] [Google Scholar]
  6. Harlan J. E., Yoon H. S., Hajduk P. J., Fesik S. W. Structural characterization of the interaction between a pleckstrin homology domain and phosphatidylinositol 4,5-bisphosphate. Biochemistry. 1995 Aug 8;34(31):9859–9864. doi: 10.1021/bi00031a006. [DOI] [PubMed] [Google Scholar]
  7. Hashimoto S., Tsukada S., Matsushita M., Miyawaki T., Niida Y., Yachie A., Kobayashi S., Iwata T., Hayakawa H., Matsuoka H. Identification of Bruton's tyrosine kinase (Btk) gene mutations and characterization of the derived proteins in 35 X-linked agammaglobulinemia families: a nationwide study of Btk deficiency in Japan. Blood. 1996 Jul 15;88(2):561–573. [PubMed] [Google Scholar]
  8. Heyeck S. D., Berg L. J. Developmental regulation of a murine T-cell-specific tyrosine kinase gene, Tsk. Proc Natl Acad Sci U S A. 1993 Jan 15;90(2):669–673. doi: 10.1073/pnas.90.2.669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hyvönen M., Macias M. J., Nilges M., Oschkinat H., Saraste M., Wilmanns M. Structure of the binding site for inositol phosphates in a PH domain. EMBO J. 1995 Oct 2;14(19):4676–4685. doi: 10.1002/j.1460-2075.1995.tb00149.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jin H., Webster A. D., Vihinen M., Sideras P., Vorechovsky I., Hammarstróm L., Bernatowska-Matuszkiewicz E., Smith C. I., Bobrow M., Vetrie D. Identification of Btk mutations in 20 unrelated patients with X-linked agammaglobulinaemia (XLA). Hum Mol Genet. 1995 Apr;4(4):693–700. doi: 10.1093/hmg/4.4.693. [DOI] [PubMed] [Google Scholar]
  11. Krawczak M., Cooper D. N. Gene deletions causing human genetic disease: mechanisms of mutagenesis and the role of the local DNA sequence environment. Hum Genet. 1991 Mar;86(5):425–441. doi: 10.1007/BF00194629. [DOI] [PubMed] [Google Scholar]
  12. Kwan S. P., Kunkel L., Bruns G., Wedgwood R. J., Latt S., Rosen F. S. Mapping of the X-linked agammaglobulinemia locus by use of restriction fragment-length polymorphism. J Clin Invest. 1986 Feb;77(2):649–652. doi: 10.1172/JCI112351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kwan S. P., Terwilliger J., Parmley R., Raghu G., Sandkuyl L. A., Ott J., Ochs H., Wedgwood R., Rosen F. Identification of a closely linked DNA marker, DXS178, to further refine the X-linked agammaglobulinemia locus. Genomics. 1990 Feb;6(2):238–242. doi: 10.1016/0888-7543(90)90562-9. [DOI] [PubMed] [Google Scholar]
  14. Mahadevan D., Thanki N., Singh J., McPhie P., Zangrilli D., Wang L. M., Guerrero C., LeVine H., 3rd, Humblet C., Saldanha J. Structural studies on the PH domains of Db1, Sos1, IRS-1, and beta ARK1 and their differential binding to G beta gamma subunits. Biochemistry. 1995 Jul 18;34(28):9111–9117. doi: 10.1021/bi00028a021. [DOI] [PubMed] [Google Scholar]
  15. Mano H., Mano K., Tang B., Koehler M., Yi T., Gilbert D. J., Jenkins N. A., Copeland N. G., Ihle J. N. Expression of a novel form of Tec kinase in hematopoietic cells and mapping of the gene to chromosome 5 near Kit. Oncogene. 1993 Feb;8(2):417–424. [PubMed] [Google Scholar]
  16. Mano H., Sato K., Yazaki Y., Hirai H. Tec protein-tyrosine kinase directly associates with Lyn protein-tyrosine kinase through its N-terminal unique domain. Oncogene. 1994 Nov;9(11):3205–3211. [PubMed] [Google Scholar]
  17. Mattsson P. T., Vihinen M., Smith C. I. X-linked agammaglobulinemia (XLA): a genetic tyrosine kinase (Btk) disease. Bioessays. 1996 Oct;18(10):825–834. doi: 10.1002/bies.950181009. [DOI] [PubMed] [Google Scholar]
  18. Notarangelo L. D., Peitsch M. C., Abrahamsen T. G., Bachelot C., Bordigoni P., Cant A. J., Chapel H., Clementi M., Deacock S., de Saint Basile G. CD40lbase: a database of CD40L gene mutations causing X-linked hyper-IgM syndrome. Immunol Today. 1996 Nov;17(11):511–516. doi: 10.1016/0167-5699(96)30059-5. [DOI] [PubMed] [Google Scholar]
  19. Ohta Y., Haire R. N., Litman R. T., Fu S. M., Nelson R. P., Kratz J., Kornfeld S. J., de la Morena M., Good R. A., Litman G. W. Genomic organization and structure of Bruton agammaglobulinemia tyrosine kinase: localization of mutations associated with varied clinical presentations and course in X chromosome-linked agammaglobulinemia. Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):9062–9066. doi: 10.1073/pnas.91.19.9062. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ott J., Mensink E. J., Thompson A., Schot J. D., Schuurman R. K. Heterogeneity in the map distance between X-linked agammaglobulinemia and a map of nine RFLP loci. Hum Genet. 1986 Nov;74(3):280–283. doi: 10.1007/BF00282549. [DOI] [PubMed] [Google Scholar]
  21. Pawson T. Protein modules and signalling networks. Nature. 1995 Feb 16;373(6515):573–580. doi: 10.1038/373573a0. [DOI] [PubMed] [Google Scholar]
  22. Rawlings D. J., Saffran D. C., Tsukada S., Largaespada D. A., Grimaldi J. C., Cohen L., Mohr R. N., Bazan J. F., Howard M., Copeland N. G. Mutation of unique region of Bruton's tyrosine kinase in immunodeficient XID mice. Science. 1993 Jul 16;261(5119):358–361. doi: 10.1126/science.8332901. [DOI] [PubMed] [Google Scholar]
  23. Rohrer J., Parolini O., Belmont J. W., Conley M. E., Parolino O [corrected to Parolini O. ]. The genomic structure of human BTK, the defective gene in X-linked agammaglobulinemia. Immunogenetics. 1994;40(5):319–324. doi: 10.1007/BF01246672. [DOI] [PubMed] [Google Scholar]
  24. Roos D. X-CGDbase: a database of X-CGD-causing mutations. Immunol Today. 1996 Nov;17(11):517–521. doi: 10.1016/0167-5699(96)30060-1. [DOI] [PubMed] [Google Scholar]
  25. Schuster V., Seidenspinner S., Kreth H. W. Detection of a novel mutation in the SRC homology domain 2 (SH2) of Bruton's tyrosine kinase and direct female carrier evaluation in a family with X-linked agammaglobulinemia. Am J Med Genet. 1996 May 3;63(1):318–322. doi: 10.1002/(SICI)1096-8628(19960503)63:1<318::AID-AJMG53>3.0.CO;2-N. [DOI] [PubMed] [Google Scholar]
  26. Sideras P., Müller S., Shiels H., Jin H., Khan W. N., Nilsson L., Parkinson E., Thomas J. D., Brandén L., Larsson I. Genomic organization of mouse and human Bruton's agammaglobulinemia tyrosine kinase (Btk) loci. J Immunol. 1994 Dec 15;153(12):5607–5617. [PubMed] [Google Scholar]
  27. Sideras P., Smith C. I. Molecular and cellular aspects of X-linked agammaglobulinemia. Adv Immunol. 1995;59:135–223. doi: 10.1016/s0065-2776(08)60631-8. [DOI] [PubMed] [Google Scholar]
  28. Siliciano J. D., Morrow T. A., Desiderio S. V. itk, a T-cell-specific tyrosine kinase gene inducible by interleukin 2. Proc Natl Acad Sci U S A. 1992 Dec 1;89(23):11194–11198. doi: 10.1073/pnas.89.23.11194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Smith C. I., Baskin B., Humire-Greiff P., Zhou J. N., Olsson P. G., Maniar H. S., Kjellén P., Lambris J. D., Christensson B., Hammarström L. Expression of Bruton's agammaglobulinemia tyrosine kinase gene, BTK, is selectively down-regulated in T lymphocytes and plasma cells. J Immunol. 1994 Jan 15;152(2):557–565. [PubMed] [Google Scholar]
  30. Smith C. I., Islam K. B., Vorechovský I., Olerup O., Wallin E., Rabbani H., Baskin B., Hammarström L. X-linked agammaglobulinemia and other immunoglobulin deficiencies. Immunol Rev. 1994 Apr;138:159–183. doi: 10.1111/j.1600-065x.1994.tb00851.x. [DOI] [PubMed] [Google Scholar]
  31. Tamagnone L., Lahtinen I., Mustonen T., Virtaneva K., Francis F., Muscatelli F., Alitalo R., Smith C. I., Larsson C., Alitalo K. BMX, a novel nonreceptor tyrosine kinase gene of the BTK/ITK/TEC/TXK family located in chromosome Xp22.2. Oncogene. 1994 Dec;9(12):3683–3688. [PubMed] [Google Scholar]
  32. Thomas J. D., Sideras P., Smith C. I., Vorechovský I., Chapman V., Paul W. E. Colocalization of X-linked agammaglobulinemia and X-linked immunodeficiency genes. Science. 1993 Jul 16;261(5119):355–358. doi: 10.1126/science.8332900. [DOI] [PubMed] [Google Scholar]
  33. Touhara K., Inglese J., Pitcher J. A., Shaw G., Lefkowitz R. J. Binding of G protein beta gamma-subunits to pleckstrin homology domains. J Biol Chem. 1994 Apr 8;269(14):10217–10220. [PubMed] [Google Scholar]
  34. Touhara K., Koch W. J., Hawes B. E., Lefkowitz R. J. Mutational analysis of the pleckstrin homology domain of the beta-adrenergic receptor kinase. Differential effects on G beta gamma and phosphatidylinositol 4,5-bisphosphate binding. J Biol Chem. 1995 Jul 14;270(28):17000–17005. doi: 10.1074/jbc.270.28.17000. [DOI] [PubMed] [Google Scholar]
  35. Tsukada S., Saffran D. C., Rawlings D. J., Parolini O., Allen R. C., Klisak I., Sparkes R. S., Kubagawa H., Mohandas T., Quan S. Deficient expression of a B cell cytoplasmic tyrosine kinase in human X-linked agammaglobulinemia. Cell. 1993 Jan 29;72(2):279–290. doi: 10.1016/0092-8674(93)90667-f. [DOI] [PubMed] [Google Scholar]
  36. Tsukada S., Simon M. I., Witte O. N., Katz A. Binding of beta gamma subunits of heterotrimeric G proteins to the PH domain of Bruton tyrosine kinase. Proc Natl Acad Sci U S A. 1994 Nov 8;91(23):11256–11260. doi: 10.1073/pnas.91.23.11256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Vetrie D., Vorechovský I., Sideras P., Holland J., Davies A., Flinter F., Hammarström L., Kinnon C., Levinsky R., Bobrow M. The gene involved in X-linked agammaglobulinaemia is a member of the src family of protein-tyrosine kinases. Nature. 1993 Jan 21;361(6409):226–233. doi: 10.1038/361226a0. [DOI] [PubMed] [Google Scholar]
  38. Vihinen M., Brooimans R. A., Kwan S. P., Lehväslaiho H., Litman G. W., Ochs H. D., Resnick I., Schwaber J. H., Vorechovsky I., Smith C. I. BTKbase: XLA-mutation registry. Immunol Today. 1996 Nov;17(11):502–506. doi: 10.1016/0167-5699(96)30058-3. [DOI] [PubMed] [Google Scholar]
  39. Vihinen M., Cooper M. D., de Saint Basile G., Fischer A., Good R. A., Hendriks R. W., Kinnon C., Kwan S. P., Litman G. W., Notarangelo L. D. BTKbase: a database of XLA-causing mutations. International Study Group. Immunol Today. 1995 Oct;16(10):460–465. doi: 10.1016/0167-5699(95)80027-1. [DOI] [PubMed] [Google Scholar]
  40. Vihinen M., Iwata T., Kinnon C., Kwan S. P., Ochs H. D., Vorechovský I., Smith C. I. BTKbase, mutation database for X-linked agammaglobulinemia (XLA). Nucleic Acids Res. 1996 Jan 1;24(1):160–165. doi: 10.1093/nar/24.1.160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Vihinen M., Nilsson L., Smith C. I. Structural basis of SH2 domain mutations in X-linked agammaglobulinemia. Biochem Biophys Res Commun. 1994 Dec 15;205(2):1270–1277. doi: 10.1006/bbrc.1994.2802. [DOI] [PubMed] [Google Scholar]
  42. Vihinen M., Nilsson L., Smith C. I. Tec homology (TH) adjacent to the PH domain. FEBS Lett. 1994 Aug 22;350(2-3):263–265. doi: 10.1016/0014-5793(94)00783-7. [DOI] [PubMed] [Google Scholar]
  43. Vihinen M., Smith C. I. Structural aspects of signal transduction in B-cells. Crit Rev Immunol. 1996;16(3):251–275. doi: 10.1615/critrevimmunol.v16.i3.20. [DOI] [PubMed] [Google Scholar]
  44. Vihinen M., Vetrie D., Maniar H. S., Ochs H. D., Zhu Q., Vorechovský I., Webster A. D., Notarangelo L. D., Nilsson L., Sowadski J. M. Structural basis for chromosome X-linked agammaglobulinemia: a tyrosine kinase disease. Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):12803–12807. doi: 10.1073/pnas.91.26.12803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Vihinen M., Zvelebil M. J., Zhu Q., Brooimans R. A., Ochs H. D., Zegers B. J., Nilsson L., Waterfield M. D., Smith C. I. Structural basis for pleckstrin homology domain mutations in X-linked agammaglobulinemia. Biochemistry. 1995 Feb 7;34(5):1475–1481. doi: 10.1021/bi00005a002. [DOI] [PubMed] [Google Scholar]
  46. Vorechovský I., Vetrie D., Holland J., Bentley D. R., Thomas K., Zhou J. N., Notarangelo L. D., Plebani A., Fontán G., Ochs H. D. Isolation of cosmid and cDNA clones in the region surrounding the BTK gene at Xq21.3-q22. Genomics. 1994 Jun;21(3):517–524. doi: 10.1006/geno.1994.1310. [DOI] [PubMed] [Google Scholar]
  47. Vorechovský I., Vihinen M., de Saint Basile G., Honsová S., Hammarström L., Müller S., Nilsson L., Fischer A., Smith C. I. DNA-based mutation analysis of Bruton's tyrosine kinase gene in patients with X-linked agammaglobulinaemia. Hum Mol Genet. 1995 Jan;4(1):51–58. doi: 10.1093/hmg/4.1.51. [DOI] [PubMed] [Google Scholar]
  48. Yao L., Kawakami Y., Kawakami T. The pleckstrin homology domain of Bruton tyrosine kinase interacts with protein kinase C. Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):9175–9179. doi: 10.1073/pnas.91.19.9175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Zhu Q., Zhang M., Rawlings D. J., Vihinen M., Hagemann T., Saffran D. C., Kwan S. P., Nilsson L., Smith C. I., Witte O. N. Deletion within the Src homology domain 3 of Bruton's tyrosine kinase resulting in X-linked agammaglobulinemia (XLA). J Exp Med. 1994 Aug 1;180(2):461–470. doi: 10.1084/jem.180.2.461. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES