Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Jan 15;25(2):283–288. doi: 10.1093/nar/25.2.283

Neither HMG-14a nor HMG-17 gene function is required for growth of chicken DT40 cells or maintenance of DNaseI-hypersensitive sites.

Y Li 1, J R Strahler 1, J B Dodgson 1
PMCID: PMC146424  PMID: 9016555

Abstract

HMG-14 and HMG-17 form a family of ubiquitous non-histone chromosomal proteins and have been reported to bind preferentially to regions of active chromatin structure. Our previous studies demonstrated that the chicken HMG-17 gene is dispensable for normal growth of the DT40 chicken lymphoid cell line. Here it is shown that the major chicken HMG-14 gene,HMG-14a, is also dispensable and, moreover, that DT40-derived cells lacking both HMG-17 and HMG-14a proteins show no obvious change in phenotype with respect to the parental DT40 cells. Furthermore, no compensatory changes in HMG-14b or histone protein levels were observed in cells lacking both HMG-14a and HMG-17, nor were any alterations detected in such hallmarks of chromatin structure as DNaseI-hypersensitive sites or micrococcal nuclease digestion patterns. It is concluded that the HMG-14a and HMG-17 proteins are not required for normal growth of avian cell linesin vitro, nor for the maintenance of DNaseI-hypersensitive sites in chromatin.

Full Text

The Full Text of this article is available as a PDF (135.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alfonso P. J., Crippa M. P., Hayes J. J., Bustin M. The footprint of chromosomal proteins HMG-14 and HMG-17 on chromatin subunits. J Mol Biol. 1994 Feb 11;236(1):189–198. doi: 10.1006/jmbi.1994.1128. [DOI] [PubMed] [Google Scholar]
  2. Baba T. W., Giroir B. P., Humphries E. H. Cell lines derived from avian lymphomas exhibit two distinct phenotypes. Virology. 1985 Jul 15;144(1):139–151. doi: 10.1016/0042-6822(85)90312-5. [DOI] [PubMed] [Google Scholar]
  3. Bellard M., Dretzen G., Giangrande A., Ramain P. Nuclease digestion of transcriptionally active chromatin. Methods Enzymol. 1989;170:317–346. doi: 10.1016/0076-6879(89)70054-9. [DOI] [PubMed] [Google Scholar]
  4. Browne D. L., Dodgson J. B. The gene encoding chicken chromosomal protein HMG-14a is transcribed into multiple mRNAs. Gene. 1993 Feb 28;124(2):199–206. doi: 10.1016/0378-1119(93)90394-i. [DOI] [PubMed] [Google Scholar]
  5. Bustin M., Crippa M. P., Pash J. M. Immunochemical analysis of the exposure of high mobility group protein 14 and 17 surfaces in chromatin. J Biol Chem. 1990 Nov 25;265(33):20077–20080. [PubMed] [Google Scholar]
  6. Bustin M., Lehn D. A., Landsman D. Structural features of the HMG chromosomal proteins and their genes. Biochim Biophys Acta. 1990 Jul 30;1049(3):231–243. doi: 10.1016/0167-4781(90)90092-g. [DOI] [PubMed] [Google Scholar]
  7. Cook G. R., Minch M., Schroth G. P., Bradbury E. M. Analysis of the binding of high mobility group protein 17 to the nucleosome core particle by 1H NMR spectroscopy. J Biol Chem. 1989 Jan 25;264(3):1799–1803. [PubMed] [Google Scholar]
  8. Dodgson J. B., Browne D. L., Black A. J. Chicken chromosomal protein HMG-14 and HMG-17 cDNA clones: isolation, characterization and sequence comparison. Gene. 1988 Mar 31;63(2):287–295. doi: 10.1016/0378-1119(88)90532-x. [DOI] [PubMed] [Google Scholar]
  9. Druckmann S., Mendelson E., Landsman D., Bustin M. Immunofractionation of DNA sequences associated with HMG-17 in chromatin. Exp Cell Res. 1986 Oct;166(2):486–496. doi: 10.1016/0014-4827(86)90493-3. [DOI] [PubMed] [Google Scholar]
  10. Goodwin G. H., Nicolas R. H., Cockerill P. N., Zavou S., Wright C. A. The effect of salt extraction on the structure of transcriptionally active genes; evidence for a DNAseI-sensitive structure which could be dependent on chromatin structure at levels higher than the 30 nm fibre. Nucleic Acids Res. 1985 May 24;13(10):3561–3579. doi: 10.1093/nar/13.10.3561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Huang S. Y., Garrard W. T. Electrophoretic analyses of nucleosomes and other protein-DNA complexes. Methods Enzymol. 1989;170:116–142. doi: 10.1016/0076-6879(89)70044-6. [DOI] [PubMed] [Google Scholar]
  12. Landsman D., Srikantha T., Bustin M. Single copy gene for the chicken non-histone chromosomal protein HMG-17. J Biol Chem. 1988 Mar 15;263(8):3917–3923. [PubMed] [Google Scholar]
  13. Lennox R. W., Cohen L. H. Analysis of histone subtypes and their modified forms by polyacrylamide gel electrophoresis. Methods Enzymol. 1989;170:532–549. doi: 10.1016/0076-6879(89)70063-x. [DOI] [PubMed] [Google Scholar]
  14. Li Y., Dodgson J. B. The chicken HMG-17 gene is dispensable for cell growth in vitro. Mol Cell Biol. 1995 Oct;15(10):5516–5523. doi: 10.1128/mcb.15.10.5516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Neel B. G., Gasic G. P., Rogler C. E., Skalka A. M., Ju G., Hishinuma F., Papas T., Astrin S. M., Hayward W. S. Molecular analysis of the c-myc locus in normal tissue and in avian leukosis virus-induced lymphomas. J Virol. 1982 Oct;44(1):158–166. doi: 10.1128/jvi.44.1.158-166.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nicolas R. H., Wright C. A., Cockerill P. N., Wyke J. A., Goodwin G. H. The nuclease sensitivity of active genes. Nucleic Acids Res. 1983 Feb 11;11(3):753–772. doi: 10.1093/nar/11.3.753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Pash J. M., Alfonso P. J., Bustin M. Aberrant expression of high mobility group chromosomal protein 14 affects cellular differentiation. J Biol Chem. 1993 Jun 25;268(18):13632–13638. [PubMed] [Google Scholar]
  18. Paton A. E., Wilkinson-Singley E., Olins D. E. Nonhistone nuclear high mobility group proteins 14 and 17 stabilize nucleosome core particles. J Biol Chem. 1983 Nov 10;258(21):13221–13229. [PubMed] [Google Scholar]
  19. Postnikov Y. V., Shick V. V., Belyavsky A. V., Khrapko K. R., Brodolin K. L., Nikolskaya T. A., Mirzabekov A. D. Distribution of high mobility group proteins 1/2, E and 14/17 and linker histones H1 and H5 on transcribed and non-transcribed regions of chicken erythrocyte chromatin. Nucleic Acids Res. 1991 Feb 25;19(4):717–725. doi: 10.1093/nar/19.4.717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sandeen G., Wood W. I., Felsenfeld G. The interaction of high mobility proteins HMG14 and 17 with nucleosomes. Nucleic Acids Res. 1980 Sep 11;8(17):3757–3778. doi: 10.1093/nar/8.17.3757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Seale R. L., Annunziato A. T., Smith R. D. High mobility group proteins: abundance, turnover, and relationship to transcriptionally active chromatin. Biochemistry. 1983 Oct 11;22(21):5008–5015. doi: 10.1021/bi00290a020. [DOI] [PubMed] [Google Scholar]
  22. Seguchi K., Takami Y., Nakayama T. Targeted disruption of 01H1 encoding a particular H1 histone variant causes changes in protein patterns in the DT40 chicken B cell line. J Mol Biol. 1995 Dec 15;254(5):869–880. doi: 10.1006/jmbi.1995.0662. [DOI] [PubMed] [Google Scholar]
  23. Shakoori A. R., Owen T. A., Shalhoub V., Stein J. L., Bustin M., Stein G. S., Lian J. B. Differential expression of the chromosomal high mobility group proteins 14 and 17 during the onset of differentiation in mammalian osteoblasts and promyelocytic leukemia cells. J Cell Biochem. 1993 Apr;51(4):479–487. doi: 10.1002/jcb.2400510413. [DOI] [PubMed] [Google Scholar]
  24. Shick V. V., Belyavsky A. V., Mirzabekov A. D. Primary organization of nucleosomes. Interaction of non-histone high mobility group proteins 14 and 17 with nucleosomes, as revealed by DNA-protein crosslinking and immunoaffinity isolation. J Mol Biol. 1985 Sep 20;185(2):329–339. doi: 10.1016/0022-2836(85)90407-3. [DOI] [PubMed] [Google Scholar]
  25. Srikantha T., Landsman D., Bustin M. Cloning of the chicken chromosomal protein HMG-14 cDNA reveals a unique protein with a conserved DNA binding domain. J Biol Chem. 1988 Sep 25;263(27):13500–13503. [PubMed] [Google Scholar]
  26. Stein A., Townsend T. HMG 14/17 binding affinities and DNAase I sensitivities of nucleoprotein particles. Nucleic Acids Res. 1983 Oct 11;11(19):6803–6819. doi: 10.1093/nar/11.19.6803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Swerdlow P. S., Varshavsky A. Affinity of HMG17 for a mononucleosome is not influenced by the presence of ubiquitin-H2A semihistone but strongly depends on DNA fragment size. Nucleic Acids Res. 1983 Jan 25;11(2):387–401. doi: 10.1093/nar/11.2.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Takami Y., Takeda S., Nakayama T. Targeted disruption of H2B-V encoding a particular H2B histone variant causes changes in protein patterns on two-dimensional polyacrylamide gel electrophoresis in the DT40 chicken B cell line. J Biol Chem. 1995 Dec 22;270(51):30664–30670. doi: 10.1074/jbc.270.51.30664. [DOI] [PubMed] [Google Scholar]
  29. Thompson C. B., Neiman P. E. Somatic diversification of the chicken immunoglobulin light chain gene is limited to the rearranged variable gene segment. Cell. 1987 Feb 13;48(3):369–378. doi: 10.1016/0092-8674(87)90188-7. [DOI] [PubMed] [Google Scholar]
  30. Urban M. K., Franklin S. G., Zweidler A. Isolation and characterization of the histone variants in chicken erythrocytes. Biochemistry. 1979 Sep 4;18(18):3952–3960. doi: 10.1021/bi00585a017. [DOI] [PubMed] [Google Scholar]
  31. Weisbrod S. Active chromatin. Nature. 1982 May 27;297(5864):289–295. doi: 10.1038/297289a0. [DOI] [PubMed] [Google Scholar]
  32. Weisbrod S., Groudine M., Weintraub H. Interaction of HMG 14 and 17 with actively transcribed genes. Cell. 1980 Jan;19(1):289–301. doi: 10.1016/0092-8674(80)90410-9. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES