Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Jan 15;25(2):347–353. doi: 10.1093/nar/25.2.347

Template-directed dye-terminator incorporation (TDI) assay: a homogeneous DNA diagnostic method based on fluorescence resonance energy transfer.

X Chen 1, P Y Kwok 1
PMCID: PMC146426  PMID: 9016564

Abstract

A new method for DNA diagnostics based on template-directed primer extension and detection by fluorescence resonance energy transfer is described. In this method, amplified genomic DNA fragments containing polymorphic sites are incubated with a 5'-fluorescein-labeled primer (designed to hybridize to the DNA template adjacent to the polymorphic site) in the presence of allelic dye-labeled dideoxyribonucleoside triphosphates and a modified Taq DNA polymerase (Klentaq1-FY). The dye-labeled primer is extended one base by the dye-terminator specific for the allele present on the template. At the end of the genotyping reaction, the fluorescence intensities of the two dyes in the reaction mixture are analyzed directly without separation or purification. This homogeneous DNA diagnostic method, which we call the template-directed dye-terminator incorporation assay, is shown to be highly sensitive and specific and is suitable for automated genotyping of large numbers of samples.

Full Text

The Full Text of this article is available as a PDF (204.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alford R. L., Caskey C. T. DNA analysis in forensics, disease and animal/plant identification. Curr Opin Biotechnol. 1994 Feb;5(1):29–33. doi: 10.1016/s0958-1669(05)80066-7. [DOI] [PubMed] [Google Scholar]
  2. Cannon-Albright L. A., Skolnick M. H. THe genetics of familial breast cancer. Semin Oncol. 1996 Feb;23(1 Suppl 2):1–5. [PubMed] [Google Scholar]
  3. Clegg R. M. Fluorescence resonance energy transfer. Curr Opin Biotechnol. 1995 Feb;6(1):103–110. doi: 10.1016/0958-1669(95)80016-6. [DOI] [PubMed] [Google Scholar]
  4. Cooper D. N., Smith B. A., Cooke H. J., Niemann S., Schmidtke J. An estimate of unique DNA sequence heterozygosity in the human genome. Hum Genet. 1985;69(3):201–205. doi: 10.1007/BF00293024. [DOI] [PubMed] [Google Scholar]
  5. Davies J. L., Kawaguchi Y., Bennett S. T., Copeman J. B., Cordell H. J., Pritchard L. E., Reed P. W., Gough S. C., Jenkins S. C., Palmer S. M. A genome-wide search for human type 1 diabetes susceptibility genes. Nature. 1994 Sep 8;371(6493):130–136. doi: 10.1038/371130a0. [DOI] [PubMed] [Google Scholar]
  6. Feder J. N., Gnirke A., Thomas W., Tsuchihashi Z., Ruddy D. A., Basava A., Dormishian F., Domingo R., Jr, Ellis M. C., Fullan A. A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nat Genet. 1996 Aug;13(4):399–408. doi: 10.1038/ng0896-399. [DOI] [PubMed] [Google Scholar]
  7. Ju J., Ruan C., Fuller C. W., Glazer A. N., Mathies R. A. Fluorescence energy transfer dye-labeled primers for DNA sequencing and analysis. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4347–4351. doi: 10.1073/pnas.92.10.4347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kaiser R. J., MacKellar S. L., Vinayak R. S., Sanders J. Z., Saavedra R. A., Hood L. E. Specific-primer-directed DNA sequencing using automated fluorescence detection. Nucleic Acids Res. 1989 Aug 11;17(15):6087–6102. doi: 10.1093/nar/17.15.6087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kornreich R., Astrin K. H., Desnick R. J. Amplification of human polymorphic sites in the X-chromosomal region q21.33 to q24: DXS17, DXS87, DXS287, and alpha-galactosidase A. Genomics. 1992 May;13(1):70–74. doi: 10.1016/0888-7543(92)90203-5. [DOI] [PubMed] [Google Scholar]
  10. Livak K. J., Flood S. J., Marmaro J., Giusti W., Deetz K. Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization. PCR Methods Appl. 1995 Jun;4(6):357–362. doi: 10.1101/gr.4.6.357. [DOI] [PubMed] [Google Scholar]
  11. Livak K. J., Marmaro J., Todd J. A. Towards fully automated genome-wide polymorphism screening. Nat Genet. 1995 Apr;9(4):341–342. doi: 10.1038/ng0495-341. [DOI] [PubMed] [Google Scholar]
  12. Nickerson D. A., Kaiser R., Lappin S., Stewart J., Hood L., Landegren U. Automated DNA diagnostics using an ELISA-based oligonucleotide ligation assay. Proc Natl Acad Sci U S A. 1990 Nov;87(22):8923–8927. doi: 10.1073/pnas.87.22.8923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Nikiforov T. T., Rendle R. B., Goelet P., Rogers Y. H., Kotewicz M. L., Anderson S., Trainor G. L., Knapp M. R. Genetic Bit Analysis: a solid phase method for typing single nucleotide polymorphisms. Nucleic Acids Res. 1994 Oct 11;22(20):4167–4175. doi: 10.1093/nar/22.20.4167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Parker L. T., Deng Q., Zakeri H., Carlson C., Nickerson D. A., Kwok P. Y. Peak height variations in automated sequencing of PCR products using Taq dye-terminator chemistry. Biotechniques. 1995 Jul;19(1):116–121. [PubMed] [Google Scholar]
  15. Parker L. T., Zakeri H., Deng Q., Spurgeon S., Kwok P. Y., Nickerson D. A. AmpliTaq DNA polymerase, FS dye-terminator sequencing: analysis of peak height patterns. Biotechniques. 1996 Oct;21(4):694–699. doi: 10.2144/96214rr02. [DOI] [PubMed] [Google Scholar]
  16. Parry P. J., Markie D., Fearon E. R., Nigro J. M., Vogelstein B., Bodmer W. F. PCR-based detection of two MspI polymorphic sites at D18S8. Nucleic Acids Res. 1991 Dec 25;19(24):6983–6983. doi: 10.1093/nar/19.24.6983-a. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Pease A. C., Solas D., Sullivan E. J., Cronin M. T., Holmes C. P., Fodor S. P. Light-generated oligonucleotide arrays for rapid DNA sequence analysis. Proc Natl Acad Sci U S A. 1994 May 24;91(11):5022–5026. doi: 10.1073/pnas.91.11.5022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Perera F. P. Molecular epidemiology: insights into cancer susceptibility, risk assessment, and prevention. J Natl Cancer Inst. 1996 Apr 17;88(8):496–509. doi: 10.1093/jnci/88.8.496. [DOI] [PubMed] [Google Scholar]
  19. Poo H., Krauss J. C., Mayo-Bond L., Todd R. F., 3rd, Petty H. R. Interaction of Fc gamma receptor type IIIB with complement receptor type 3 in fibroblast transfectants: evidence from lateral diffusion and resonance energy transfer studies. J Mol Biol. 1995 Apr 7;247(4):597–603. doi: 10.1006/jmbi.1995.0166. [DOI] [PubMed] [Google Scholar]
  20. Prober J. M., Trainor G. L., Dam R. J., Hobbs F. W., Robertson C. W., Zagursky R. J., Cocuzza A. J., Jensen M. A., Baumeister K. A system for rapid DNA sequencing with fluorescent chain-terminating dideoxynucleotides. Science. 1987 Oct 16;238(4825):336–341. doi: 10.1126/science.2443975. [DOI] [PubMed] [Google Scholar]
  21. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988 Jan 29;239(4839):487–491. doi: 10.1126/science.2448875. [DOI] [PubMed] [Google Scholar]
  22. Samiotaki M., Kwiatkowski M., Parik J., Landegren U. Dual-color detection of DNA sequence variants by ligase-mediated analysis. Genomics. 1994 Mar 15;20(2):238–242. doi: 10.1006/geno.1994.1159. [DOI] [PubMed] [Google Scholar]
  23. Sheffield V. C., Weber J. L., Buetow K. H., Murray J. C., Even D. A., Wiles K., Gastier J. M., Pulido J. C., Yandava C., Sunden S. L. A collection of tri- and tetranucleotide repeat markers used to generate high quality, high resolution human genome-wide linkage maps. Hum Mol Genet. 1995 Oct;4(10):1837–1844. doi: 10.1093/hmg/4.10.1837. [DOI] [PubMed] [Google Scholar]
  24. Sixou S., Szoka F. C., Jr, Green G. A., Giusti B., Zon G., Chin D. J. Intracellular oligonucleotide hybridization detected by fluorescence resonance energy transfer (FRET). Nucleic Acids Res. 1994 Feb 25;22(4):662–668. doi: 10.1093/nar/22.4.662. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Summers K. M. Relationship between genotype and phenotype in monogenic diseases: relevance to polygenic diseases. Hum Mutat. 1996;7(4):283–293. doi: 10.1002/(SICI)1098-1004(1996)7:4<283::AID-HUMU1>3.0.CO;2-A. [DOI] [PubMed] [Google Scholar]
  26. Syvänen A. C. Detection of point mutations in human genes by the solid-phase minisequencing method. Clin Chim Acta. 1994 May;226(2):225–236. doi: 10.1016/0009-8981(94)90217-8. [DOI] [PubMed] [Google Scholar]
  27. Tabor S., Richardson C. C. A single residue in DNA polymerases of the Escherichia coli DNA polymerase I family is critical for distinguishing between deoxy- and dideoxyribonucleotides. Proc Natl Acad Sci U S A. 1995 Jul 3;92(14):6339–6343. doi: 10.1073/pnas.92.14.6339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Vyse T. J., Todd J. A. Genetic analysis of autoimmune disease. Cell. 1996 May 3;85(3):311–318. doi: 10.1016/s0092-8674(00)81110-1. [DOI] [PubMed] [Google Scholar]
  29. Yershov G., Barsky V., Belgovskiy A., Kirillov E., Kreindlin E., Ivanov I., Parinov S., Guschin D., Drobishev A., Dubiley S. DNA analysis and diagnostics on oligonucleotide microchips. Proc Natl Acad Sci U S A. 1996 May 14;93(10):4913–4918. doi: 10.1073/pnas.93.10.4913. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES