Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Jan 15;25(2):449–450. doi: 10.1093/nar/25.2.449

Transcription from plasmid expression vectors is increased up to 14-fold when plasmids are transfected as concatemers.

P Leahy 1, G G Carmichael 1, E F Rossomando 1
PMCID: PMC146435  PMID: 9016578

Abstract

A protocol for increasing transcription from plasmid expression vectors is presented. A vector containing chloramphenicol acetyltransferase (CAT) gene was digested leaving the transcription cassette intact. Heat inactivation of restriction enzymes followed by ligation of the digestion products yielded concatemers which migrated as a single band in agarose gel electrophoresis. Mouse fibroblasts transfected with the concatemers gave a CAT activity that was 14-fold greater than that of cells transfected with a similar mass (equimolar gene number) of the native plasmid. The effect was independent of promoter type, restriction enzyme, number of restriction sites and with a noted exception, cell line.

Full Text

The Full Text of this article is available as a PDF (46.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Axelrod N. J., Carmichael G. G., Farabaugh P. J. Enhancer and promoter elements from simian virus 40 and polyomavirus can substitute for an upstream activation sequence in Saccharomyces cerevisiae. Mol Cell Biol. 1990 Mar;10(3):947–957. doi: 10.1128/mcb.10.3.947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Czernilofsky A. P., Hain R., Herrera-Estrella L., Lörz H., Goyvaerts E., Baker B. J., Schell J. Fate of selectable marker DNA integrated into the genome of Nicotiana tabacum. DNA. 1986 Apr;5(2):101–113. doi: 10.1089/dna.1986.5.101. [DOI] [PubMed] [Google Scholar]
  3. Dhawale S. S., Marzluf G. A. Transformation of Neurospora crassa with circular and linear DNA and analysis of the fate of the transforming DNA. Curr Genet. 1985;10(3):205–212. doi: 10.1007/BF00798750. [DOI] [PubMed] [Google Scholar]
  4. Franks R. R., Hough-Evans B. R., Britten R. J., Davidson E. H. Direct introduction of cloned DNA into the sea urchin zygote nucleus, and fate of injected DNA. Development. 1988 Feb;102(2):287–299. doi: 10.1242/dev.102.2.287. [DOI] [PubMed] [Google Scholar]
  5. Hanson R. W., Patel Y. M. Phosphoenolpyruvate carboxykinase (GTP): the gene and the enzyme. Adv Enzymol Relat Areas Mol Biol. 1994;69:203–281. doi: 10.1002/9780470123157.ch6. [DOI] [PubMed] [Google Scholar]
  6. Huberman M., Berg P. E., Curcio M. J., DiPietro J., Henderson A. S., Anderson W. F. Fate and structure of DNA microinjected into mouse TK-L cells. Exp Cell Res. 1984 Aug;153(2):347–362. doi: 10.1016/0014-4827(84)90605-0. [DOI] [PubMed] [Google Scholar]
  7. Leahy P., Carmichael G. G., Rossomando E. F. Effects of ethanol concentration and incubation period at 65 degrees C on CAT activity in mammalian cell extracts. Biotechniques. 1995 Dec;19(6):894–898. [PubMed] [Google Scholar]
  8. Leahy P., Carmichael G. G., Rossomando E. F. Novel biotinylated plasmid expression vectors retain biological function and can bind streptavidin. Bioconjug Chem. 1996 Sep-Oct;7(5):545–551. doi: 10.1021/bc960044q. [DOI] [PubMed] [Google Scholar]
  9. Nakabayashi H., Taketa K., Miyano K., Yamane T., Sato J. Growth of human hepatoma cells lines with differentiated functions in chemically defined medium. Cancer Res. 1982 Sep;42(9):3858–3863. [PubMed] [Google Scholar]
  10. Steller H., Pirrotta V. Fate of DNA injected into early Drosophila embryos. Dev Biol. 1985 May;109(1):54–62. doi: 10.1016/0012-1606(85)90345-8. [DOI] [PubMed] [Google Scholar]
  11. Struhl K. Promoters, activator proteins, and the mechanism of transcriptional initiation in yeast. Cell. 1987 May 8;49(3):295–297. doi: 10.1016/0092-8674(87)90277-7. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES