Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Jan 15;25(2):403–409. doi: 10.1093/nar/25.2.403

RNA editing status of nad7 intron domains in wheat mitochondria.

C Carrillo 1, L Bonen 1
PMCID: PMC146442  PMID: 9016571

Abstract

The most highly conserved structures of group II introns are the helical domains V and VI near the 3'splice site. Within this region of each of the four introns in the wheat mitochondrial nad7 gene encoding NADH dehydrogenase subunit 7, there are A-C mispairs. To determine whether C-to-U type RNA editing restores conventional A-U pairing, we sequenced RT-PCR products from partially-spliced nad7 template RNA and gel-fractionated, excised intron RNA. We examined transcripts from germinating wheat embryos and seedlings because these two stages of development show pronounced differences in steady state levels of nad7 intronic RNAs. We observed editing at only two of the six predicted sites, and they were located at homologous positions within domain V of the third and fourth introns. A third site was found to be edited within the unmodelled domain VI loop of the fourth intron. Similar patterns of RNA editing were seen in wheat embryos and seedlings. These observations, and the presence of other non-conventional base pairs particularly within domain V of plant mitochondrial introns, indicate weaker helical core structure than in ribozymic group II introns. Moreover, the incompleteness or absence of editing in wheat nad7 excised intron RNA suggests that, although editing may contribute to splicing efficiency, it is not essential for splicing.

Full Text

The Full Text of this article is available as a PDF (183.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Binder S., Marchfelder A., Brennicke A., Wissinger B. RNA editing in trans-splicing intron sequences of nad2 mRNAs in Oenothera mitochondria. J Biol Chem. 1992 Apr 15;267(11):7615–7623. [PubMed] [Google Scholar]
  2. Bonen L. The mitochondrial S13 ribosomal protein gene is silent in wheat embryos and seedlings. Nucleic Acids Res. 1987 Dec 23;15(24):10393–10404. doi: 10.1093/nar/15.24.10393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bonen L. Trans-splicing of pre-mRNA in plants, animals, and protists. FASEB J. 1993 Jan;7(1):40–46. doi: 10.1096/fasebj.7.1.8422973. [DOI] [PubMed] [Google Scholar]
  4. Bonen L., Williams K., Bird S., Wood C. The NADH dehydrogenase subunit 7 gene is interrupted by four group II introns in the wheat mitochondrial genome. Mol Gen Genet. 1994 Jul 8;244(1):81–89. doi: 10.1007/BF00280190. [DOI] [PubMed] [Google Scholar]
  5. Boulanger S. C., Belcher S. M., Schmidt U., Dib-Hajj S. D., Schmidt T., Perlman P. S. Studies of point mutants define three essential paired nucleotides in the domain 5 substructure of a group II intron. Mol Cell Biol. 1995 Aug;15(8):4479–4488. doi: 10.1128/mcb.15.8.4479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Börner G. V., Mörl M., Wissinger B., Brennicke A., Schmelzer C. RNA editing of a group II intron in Oenothera as a prerequisite for splicing. Mol Gen Genet. 1995 Mar 20;246(6):739–744. doi: 10.1007/BF00290721. [DOI] [PubMed] [Google Scholar]
  7. Chanfreau G., Jacquier A. An RNA conformational change between the two chemical steps of group II self-splicing. EMBO J. 1996 Jul 1;15(13):3466–3476. [PMC free article] [PubMed] [Google Scholar]
  8. Chapdelaine Y., Bonen L. The wheat mitochondrial gene for subunit I of the NADH dehydrogenase complex: a trans-splicing model for this gene-in-pieces. Cell. 1991 May 3;65(3):465–472. doi: 10.1016/0092-8674(91)90464-a. [DOI] [PubMed] [Google Scholar]
  9. Conklin P. L., Wilson R. K., Hanson M. R. Multiple trans-splicing events are required to produce a mature nad1 transcript in a plant mitochondrion. Genes Dev. 1991 Aug;5(8):1407–1415. doi: 10.1101/gad.5.8.1407. [DOI] [PubMed] [Google Scholar]
  10. Copertino D. W., Hallick R. B. Group II and group III introns of twintrons: potential relationships with nuclear pre-mRNA introns. Trends Biochem Sci. 1993 Dec;18(12):467–471. doi: 10.1016/0968-0004(93)90008-b. [DOI] [PubMed] [Google Scholar]
  11. Costa M., Michel F. Frequent use of the same tertiary motif by self-folding RNAs. EMBO J. 1995 Mar 15;14(6):1276–1285. doi: 10.1002/j.1460-2075.1995.tb07111.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dean A. D., Greenwald J. E. Use of filtered pipet tips to elute DNA from agarose gels. Biotechniques. 1995 Jun;18(6):980–980. [PubMed] [Google Scholar]
  13. Gray M. W., Covello P. S. RNA editing in plant mitochondria and chloroplasts. FASEB J. 1993 Jan;7(1):64–71. doi: 10.1096/fasebj.7.1.8422976. [DOI] [PubMed] [Google Scholar]
  14. Grosskopf D., Mulligan R. M. Developmental- and tissue-specificity of RNA editing in mitochondria of suspension-cultured maize cells and seedlings. Curr Genet. 1996 May;29(6):556–563. doi: 10.1007/BF02426960. [DOI] [PubMed] [Google Scholar]
  15. Knoop V., Kloska S., Brennicke A. On the identification of group II introns in nucleotide sequence data. J Mol Biol. 1994 Sep 30;242(4):389–396. doi: 10.1006/jmbi.1994.1589. [DOI] [PubMed] [Google Scholar]
  16. Knoop V., Schuster W., Wissinger B., Brennicke A. Trans splicing integrates an exon of 22 nucleotides into the nad5 mRNA in higher plant mitochondria. EMBO J. 1991 Nov;10(11):3483–3493. doi: 10.1002/j.1460-2075.1991.tb04912.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Krug M. S., Berger S. L. First-strand cDNA synthesis primed with oligo(dT). Methods Enzymol. 1987;152:316–325. doi: 10.1016/0076-6879(87)52036-5. [DOI] [PubMed] [Google Scholar]
  18. Lippok B., Brennicke A., Wissinger B. Differential RNA editing in closely related introns in Oenothera mitochondria. Mol Gen Genet. 1994 Apr;243(1):39–46. doi: 10.1007/BF00283874. [DOI] [PubMed] [Google Scholar]
  19. Marchfelder A., Brennicke A., Binder S. RNA editing is required for efficient excision of tRNA(Phe) from precursors in plant mitochondria. J Biol Chem. 1996 Jan 26;271(4):1898–1903. doi: 10.1074/jbc.271.4.1898. [DOI] [PubMed] [Google Scholar]
  20. Marechal-Drouard L., Cosset A., Remacle C., Ramamonjisoa D., Dietrich A. A single editing event is a prerequisite for efficient processing of potato mitochondrial phenylalanine tRNA. Mol Cell Biol. 1996 Jul;16(7):3504–3510. doi: 10.1128/mcb.16.7.3504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Michel F., Ferat J. L. Structure and activities of group II introns. Annu Rev Biochem. 1995;64:435–461. doi: 10.1146/annurev.bi.64.070195.002251. [DOI] [PubMed] [Google Scholar]
  22. Michel F., Umesono K., Ozeki H. Comparative and functional anatomy of group II catalytic introns--a review. Gene. 1989 Oct 15;82(1):5–30. doi: 10.1016/0378-1119(89)90026-7. [DOI] [PubMed] [Google Scholar]
  23. Oda K., Yamato K., Ohta E., Nakamura Y., Takemura M., Nozato N., Akashi K., Kanegae T., Ogura Y., Kohchi T. Gene organization deduced from the complete sequence of liverwort Marchantia polymorpha mitochondrial DNA. A primitive form of plant mitochondrial genome. J Mol Biol. 1992 Jan 5;223(1):1–7. doi: 10.1016/0022-2836(92)90708-r. [DOI] [PubMed] [Google Scholar]
  24. Peebles C. L., Zhang M., Perlman P. S., Franzen J. S. Catalytically critical nucleotide in domain 5 of a group II intron. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4422–4426. doi: 10.1073/pnas.92.10.4422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Perlman P. S., Podar M. Reactions catalyzed by group II introns in vitro. Methods Enzymol. 1996;264:66–86. doi: 10.1016/s0076-6879(96)64010-5. [DOI] [PubMed] [Google Scholar]
  26. Pla M., Mathieu C., De Paepe R., Chétrit P., Vedel F. Deletion of the last two exons of the mitochondrial nad7 gene results in lack of the NAD7 polypeptide in a Nicotiana sylvestris CMS mutant. Mol Gen Genet. 1995 Jul 22;248(1):79–88. doi: 10.1007/BF02456616. [DOI] [PubMed] [Google Scholar]
  27. Puglisi J. D., Wyatt J. R., Tinoco I., Jr Solution conformation of an RNA hairpin loop. Biochemistry. 1990 May 1;29(17):4215–4226. doi: 10.1021/bi00469a026. [DOI] [PubMed] [Google Scholar]
  28. SantaLucia J., Jr, Kierzek R., Turner D. H. Stabilities of consecutive A.C, C.C, G.G, U.C, and U.U mismatches in RNA internal loops: Evidence for stable hydrogen-bonded U.U and C.C.+ pairs. Biochemistry. 1991 Aug 20;30(33):8242–8251. doi: 10.1021/bi00247a021. [DOI] [PubMed] [Google Scholar]
  29. Sutton C. A., Conklin P. L., Pruitt K. D., Hanson M. R. Editing of pre-mRNAs can occur before cis- and trans-splicing in Petunia mitochondria. Mol Cell Biol. 1991 Aug;11(8):4274–4277. doi: 10.1128/mcb.11.8.4274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Thomson M. C., Macfarlane J. L., Beagley C. T., Wolstenholme D. R. RNA editing of mat-r transcripts in maize and soybean increases similarity of the encoded protein to fungal and bryophyte group II intron maturases: evidence that mat-r encodes a functional protein. Nucleic Acids Res. 1994 Dec 25;22(25):5745–5752. doi: 10.1093/nar/22.25.5745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wissinger B., Brennicke A., Schuster W. Regenerating good sense: RNA editing and trans splicing in plant mitochondria. Trends Genet. 1992 Sep;8(9):322–328. doi: 10.1016/0168-9525(92)90265-6. [DOI] [PubMed] [Google Scholar]
  32. Wissinger B., Schuster W., Brennicke A. Trans splicing in Oenothera mitochondria: nad1 mRNAs are edited in exon and trans-splicing group II intron sequences. Cell. 1991 May 3;65(3):473–482. doi: 10.1016/0092-8674(91)90465-b. [DOI] [PubMed] [Google Scholar]
  33. Yang A. J., Mulligan R. M. RNA editing intermediates of cox2 transcripts in maize mitochondria. Mol Cell Biol. 1991 Aug;11(8):4278–4281. doi: 10.1128/mcb.11.8.4278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Zanlungo S., Quiñones V., Moenne A., Holuigue L., Jordana X. Splicing and editing of rps10 transcripts in potato mitochondria. Curr Genet. 1995 May;27(6):565–571. doi: 10.1007/BF00314449. [DOI] [PubMed] [Google Scholar]
  35. Zuker M., Jaeger J. A., Turner D. H. A comparison of optimal and suboptimal RNA secondary structures predicted by free energy minimization with structures determined by phylogenetic comparison. Nucleic Acids Res. 1991 May 25;19(10):2707–2714. doi: 10.1093/nar/19.10.2707. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES