Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Feb 1;25(3):590–596. doi: 10.1093/nar/25.3.590

Reorganization of terminator DNA upon binding replication terminator protein: implications for the functional replication fork arrest complex.

A V Kralicek 1, P K Wilson 1, G B Ralston 1, R G Wake 1, G F King 1
PMCID: PMC146460  PMID: 9016600

Abstract

Termination of DNA replication in Bacillus subtilis involves the polar arrest of replication forks by a specific complex formed between the replication terminator protein (RTP) and DNA terminator sites. While determination of the crystal structure of RTP has facilitated our understanding of how a single RTP dimer interacts with terminator DNA, additional information is required in order to understand the assembly of a functional fork arrest complex, which requires an interaction between two RTP dimers and the terminator site. In this study, we show that the conformation of the major B.subtilis DNA terminator,TerI, becomes considerably distorted upon binding RTP. Binding of the first dimer of RTP to the B site of TerI causes the DNA to become slightly unwound and bent by approximately 40 degrees. Binding of a second dimer of RTP to the A site causes the bend angle to increase to approximately 60 degrees . We have used this new data to construct two plausible models that might explain how the ternary terminator complex can block DNA replication in a polar manner. In the first model, polarity of action is a consequence of the two RTP-DNA half-sites having different conformations. These different conformations result from different RTP-DNA contacts at each half-site (due to the intrinsic asymmetry of the terminator DNA), as well as interactions (direct or indirect) between the RTP dimers on the DNA. In the second model, polar fork arrest activity is a consequence of the different affinities of RTP for the A and B sites of the terminator DNA, modulated significantly by direct or indirect interactions between the RTP dimers.

Full Text

The Full Text of this article is available as a PDF (140.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschmied L., Hillen W. TET repressor.tet operator complex formation induces conformational changes in the tet operator DNA. Nucleic Acids Res. 1984 Feb 24;12(4):2171–2180. doi: 10.1093/nar/12.4.2171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baker T. A. Replication arrest. Cell. 1995 Feb 24;80(4):521–524. doi: 10.1016/0092-8674(95)90504-9. [DOI] [PubMed] [Google Scholar]
  3. Beckmann P., Martin S. R., Lane A. N. Interaction of the trp repressor with trp operator DNA fragments. Eur Biophys J. 1993;21(6):417–424. doi: 10.1007/BF00185869. [DOI] [PubMed] [Google Scholar]
  4. Brennan R. G. The winged-helix DNA-binding motif: another helix-turn-helix takeoff. Cell. 1993 Sep 10;74(5):773–776. doi: 10.1016/0092-8674(93)90456-z. [DOI] [PubMed] [Google Scholar]
  5. Bussiere D. E., Bastia D., White S. W. Crystal structure of the replication terminator protein from B. subtilis at 2.6 A. Cell. 1995 Feb 24;80(4):651–660. doi: 10.1016/0092-8674(95)90519-7. [DOI] [PubMed] [Google Scholar]
  6. Chuprina V. P., Rullmann J. A., Lamerichs R. M., van Boom J. H., Boelens R., Kaptein R. Structure of the complex of lac repressor headpiece and an 11 base-pair half-operator determined by nuclear magnetic resonance spectroscopy and restrained molecular dynamics. J Mol Biol. 1993 Nov 20;234(2):446–462. doi: 10.1006/jmbi.1993.1598. [DOI] [PubMed] [Google Scholar]
  7. Crothers D. M., Gartenberg M. R., Shrader T. E. DNA bending in protein-DNA complexes. Methods Enzymol. 1991;208:118–146. doi: 10.1016/0076-6879(91)08011-6. [DOI] [PubMed] [Google Scholar]
  8. Dickerson R. E. DNA structure from A to Z. Methods Enzymol. 1992;211:67–111. doi: 10.1016/0076-6879(92)11007-6. [DOI] [PubMed] [Google Scholar]
  9. Franks A. H., Griffiths A. A., Wake R. G. Identification and characterization of new DNA replication terminators in Bacillus subtilis. Mol Microbiol. 1995 Jul;17(1):13–23. doi: 10.1111/j.1365-2958.1995.mmi_17010013.x. [DOI] [PubMed] [Google Scholar]
  10. Fried M. G., Wu H. M., Crothers D. M. CAP binding to B and Z forms of DNA. Nucleic Acids Res. 1983 Apr 25;11(8):2479–2494. doi: 10.1093/nar/11.8.2479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gincel E., Lancelot G., Maurizot J. C., Thuong N. T., Vovelle F. Comparison of solution structure of free and complexed lac operator by molecular modelling with NMR constraints. Biochimie. 1994;76(2):141–151. doi: 10.1016/0300-9084(94)90006-x. [DOI] [PubMed] [Google Scholar]
  12. Gray D. M., Ratliff R. L., Vaughan M. R. Circular dichroism spectroscopy of DNA. Methods Enzymol. 1992;211:389–406. doi: 10.1016/0076-6879(92)11021-a. [DOI] [PubMed] [Google Scholar]
  13. Hiasa H., Marians K. J. Differential inhibition of the DNA translocation and DNA unwinding activities of DNA helicases by the Escherichia coli Tus protein. J Biol Chem. 1992 Jun 5;267(16):11379–11385. [PubMed] [Google Scholar]
  14. Hill T. M. Arrest of bacterial DNA replication. Annu Rev Microbiol. 1992;46:603–633. doi: 10.1146/annurev.mi.46.100192.003131. [DOI] [PubMed] [Google Scholar]
  15. Ivanov V. I., Krylov DYu A-DNA in solution as studied by diverse approaches. Methods Enzymol. 1992;211:111–127. doi: 10.1016/0076-6879(92)11008-7. [DOI] [PubMed] [Google Scholar]
  16. Ivanov V. I., Minchenkova L. E., Schyolkina A. K., Poletayev A. I. Different conformations of double-stranded nucleic acid in solution as revealed by circular dichroism. Biopolymers. 1973;12(1):89–110. doi: 10.1002/bip.1973.360120109. [DOI] [PubMed] [Google Scholar]
  17. Johnson B. B., Dahl K. S., Tinoco I., Jr, Ivanov V. I., Zhurkin V. B. Correlations between deoxyribonucleic acid structural parameters and calculated circular dichroism spectra. Biochemistry. 1981 Jan 6;20(1):73–78. doi: 10.1021/bi00504a013. [DOI] [PubMed] [Google Scholar]
  18. Johnson W. C., Jr Protein secondary structure and circular dichroism: a practical guide. Proteins. 1990;7(3):205–214. doi: 10.1002/prot.340070302. [DOI] [PubMed] [Google Scholar]
  19. Kamada K., Horiuchi T., Ohsumi K., Shimamoto N., Morikawa K. Structure of a replication-terminator protein complexed with DNA. Nature. 1996 Oct 17;383(6601):598–603. doi: 10.1038/383598a0. [DOI] [PubMed] [Google Scholar]
  20. Kaul S., Mohanty B. K., Sahoo T., Patel I., Khan S. A., Bastia D. The replication terminator protein of the gram-positive bacterium Bacillus subtilis functions as a polar contrahelicase in gram-negative Escherichia coli. Proc Natl Acad Sci U S A. 1994 Nov 8;91(23):11143–11147. doi: 10.1073/pnas.91.23.11143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Khatri G. S., MacAllister T., Sista P. R., Bastia D. The replication terminator protein of E. coli is a DNA sequence-specific contra-helicase. Cell. 1989 Nov 17;59(4):667–674. doi: 10.1016/0092-8674(89)90012-3. [DOI] [PubMed] [Google Scholar]
  22. Kim J., Zwieb C., Wu C., Adhya S. Bending of DNA by gene-regulatory proteins: construction and use of a DNA bending vector. Gene. 1989 Dec 21;85(1):15–23. doi: 10.1016/0378-1119(89)90459-9. [DOI] [PubMed] [Google Scholar]
  23. Kralicek A. V., Vesper N. A., Ralston G. B., Wake R. G., King G. F. Symmetry and secondary structure of the replication terminator protein of Bacillus subtilis: sedimentation equilibrium and circular dichroic, infrared, and NMR spectroscopic studies. Biochemistry. 1993 Sep 28;32(38):10216–10223. doi: 10.1021/bi00089a043. [DOI] [PubMed] [Google Scholar]
  24. König P., Richmond T. J. The X-ray structure of the GCN4-bZIP bound to ATF/CREB site DNA shows the complex depends on DNA flexibility. J Mol Biol. 1993 Sep 5;233(1):139–154. doi: 10.1006/jmbi.1993.1490. [DOI] [PubMed] [Google Scholar]
  25. Lane A. N., Lefèvre J. F., Jardetzky O. The interaction of the trp repressor from Escherichia coli with the trp operator. Biochim Biophys Acta. 1987 Jun 6;909(1):58–70. doi: 10.1016/0167-4781(87)90046-7. [DOI] [PubMed] [Google Scholar]
  26. Lane D., Prentki P., Chandler M. Use of gel retardation to analyze protein-nucleic acid interactions. Microbiol Rev. 1992 Dec;56(4):509–528. doi: 10.1128/mr.56.4.509-528.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Langley D. B., Smith M. T., Lewis P. J., Wake R. G. Protein-nucleoside contacts in the interaction between the replication terminator protein of Bacillus subtilis and the DNA terminator. Mol Microbiol. 1993 Nov;10(4):771–779. doi: 10.1111/j.1365-2958.1993.tb00947.x. [DOI] [PubMed] [Google Scholar]
  28. Lee E. H., Kornberg A., Hidaka M., Kobayashi T., Horiuchi T. Escherichia coli replication termination protein impedes the action of helicases. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9104–9108. doi: 10.1073/pnas.86.23.9104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Lewis P. J., Ralston G. B., Christopherson R. I., Wake R. G. Identification of the replication terminator protein binding sites in the terminus region of the Bacillus subtilis chromosome and stoichiometry of the binding. J Mol Biol. 1990 Jul 5;214(1):73–84. doi: 10.1016/0022-2836(90)90147-E. [DOI] [PubMed] [Google Scholar]
  30. Lewis P. J., Smith M. T., Wake R. G. A protein involved in termination of chromosome replication in Bacillus subtilis binds specifically to the terC site. J Bacteriol. 1989 Jun;171(6):3564–3567. doi: 10.1128/jb.171.6.3564-3567.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Manna A. C., Pai K. S., Bussiere D. E., White S. W., Bastia D. The dimer-dimer interaction surface of the replication terminator protein of Bacillus subtilis and termination of DNA replication. Proc Natl Acad Sci U S A. 1996 Apr 16;93(8):3253–3258. doi: 10.1073/pnas.93.8.3253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Maurizot J. C., Chevrie K., Durand M., Thuong N. T. The lac repressor and its N-terminal headpiece can bind a mini-operator containing a hairpin loop made of a hexaethylene glycol chain. FEBS Lett. 1991 Aug 19;288(1-2):101–104. doi: 10.1016/0014-5793(91)81012-w. [DOI] [PubMed] [Google Scholar]
  33. Mohanty B. K., Sahoo T., Bastia D. The relationship between sequence-specific termination of DNA replication and transcription. EMBO J. 1996 May 15;15(10):2530–2539. [PMC free article] [PubMed] [Google Scholar]
  34. Otwinowski Z., Schevitz R. W., Zhang R. G., Lawson C. L., Joachimiak A., Marmorstein R. Q., Luisi B. F., Sigler P. B. Crystal structure of trp repressor/operator complex at atomic resolution. Nature. 1988 Sep 22;335(6188):321–329. doi: 10.1038/335321a0. [DOI] [PubMed] [Google Scholar]
  35. Sahoo T., Mohanty B. K., Lobert M., Manna A. C., Bastia D. The contrahelicase activities of the replication terminator proteins of Escherichia coli and Bacillus subtilis are helicase-specific and impede both helicase translocation and authentic DNA unwinding. J Biol Chem. 1995 Dec 8;270(49):29138–29144. doi: 10.1074/jbc.270.49.29138. [DOI] [PubMed] [Google Scholar]
  36. Sahoo T., Mohanty B. K., Patel I., Bastia D. Termination of DNA replication in vitro: requirement for stereospecific interaction between two dimers of the replication terminator protein of Bacillus subtilis and with the terminator site to elicit polar contrahelicase and fork impedance. EMBO J. 1995 Feb 1;14(3):619–628. doi: 10.1002/j.1460-2075.1995.tb07038.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Shakked Z., Guzikevich-Guerstein G., Frolow F., Rabinovich D., Joachimiak A., Sigler P. B. Determinants of repressor/operator recognition from the structure of the trp operator binding site. Nature. 1994 Mar 31;368(6470):469–473. doi: 10.1038/368469a0. [DOI] [PubMed] [Google Scholar]
  38. Skokotas A., Wrobleski M., Hill T. M. Isolation and characterization of mutants of Tus, the replication arrest protein of Escherichia coli. J Biol Chem. 1994 Aug 12;269(32):20446–20455. [PubMed] [Google Scholar]
  39. Smith M. T., Langley D. B., Young P. A., Wake R. G. The minimal sequence needed to define a functional DNA terminator in Bacillus subtilis. J Mol Biol. 1994 Aug 19;241(3):335–340. doi: 10.1006/jmbi.1994.1510. [DOI] [PubMed] [Google Scholar]
  40. Smith M. T., Wake R. G. Definition and polarity of action of DNA replication terminators in Bacillus subtilis. J Mol Biol. 1992 Oct 5;227(3):648–657. doi: 10.1016/0022-2836(92)90214-5. [DOI] [PubMed] [Google Scholar]
  41. Smith M. T., de Vries C. J., Langley D. B., King G. F., Wake R. G. The Bacillus subtilis DNA replication terminator. J Mol Biol. 1996 Jul 5;260(1):54–69. doi: 10.1006/jmbi.1996.0381. [DOI] [PubMed] [Google Scholar]
  42. Swindells M. B. Identification of a common fold in the replication terminator protein suggests a possible mode for DNA binding. Trends Biochem Sci. 1995 Aug;20(8):300–302. doi: 10.1016/s0968-0004(00)89055-6. [DOI] [PubMed] [Google Scholar]
  43. Thompson J. F., Landy A. Empirical estimation of protein-induced DNA bending angles: applications to lambda site-specific recombination complexes. Nucleic Acids Res. 1988 Oct 25;16(20):9687–9705. doi: 10.1093/nar/16.20.9687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Weiss M. A., Ellenberger T., Wobbe C. R., Lee J. P., Harrison S. C., Struhl K. Folding transition in the DNA-binding domain of GCN4 on specific binding to DNA. Nature. 1990 Oct 11;347(6293):575–578. doi: 10.1038/347575a0. [DOI] [PubMed] [Google Scholar]
  45. Wu H. M., Crothers D. M. The locus of sequence-directed and protein-induced DNA bending. Nature. 1984 Apr 5;308(5959):509–513. doi: 10.1038/308509a0. [DOI] [PubMed] [Google Scholar]
  46. Young P. A., Wake R. G. The Bacillus subtilis replication terminator system functions in Escherichia coli. J Mol Biol. 1994 Jul 22;240(4):275–280. doi: 10.1006/jmbi.1994.1444. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES