Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Feb 1;25(3):575–581. doi: 10.1093/nar/25.3.575

Sequence-independent inhibition of RNA transcription by DNA dumbbells and other decoys.

C S Lim 1, N Jabrane-Ferrat 1, J D Fontes 1, H Okamoto 1, M R Garovoy 1, B M Peterlin 1, C A Hunt 1
PMCID: PMC146464  PMID: 9016598

Abstract

DNA dumbbells are stable, short segments of double-stranded DNA with closed nucleotide loops on each end, conferring resistance to exonucleases. Dumbbells may be designed to interact with transcription factors in a sequence-specific manner. The internal based paired sequence of DNA dumbbells in this study contains the X-box, a positive regulatory motif found in all MHC class II DRA promoters. In electrophoretic mobility shift assays (EMSAs), dumbbells and other oligonucleotides ('decoys') with the core X-box sequence were found to compete with the native strand for binding to X-box binding proteins (including RFX1). However, only the X-box dumbbell was capable of forming detectable complexes with such proteins using EMSA. In a model cell system, dumbbells were tested for their ability to block RFX1VP16 activation of a plasmid containing multiple repeats of the X-box linked to the CAT gene. While it appeared that dumbbells could block this activation, the effect was non-specific. This and further evidence suggests an inhibition of transcription, most likely via an interaction with the general transcriptional machinery.

Full Text

The Full Text of this article is available as a PDF (163.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antao V. P., Lai S. Y., Tinoco I., Jr A thermodynamic study of unusually stable RNA and DNA hairpins. Nucleic Acids Res. 1991 Nov 11;19(21):5901–5905. doi: 10.1093/nar/19.21.5901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Antao V. P., Tinoco I., Jr Thermodynamic parameters for loop formation in RNA and DNA hairpin tetraloops. Nucleic Acids Res. 1992 Feb 25;20(4):819–824. doi: 10.1093/nar/20.4.819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bielinska A., Shivdasani R. A., Zhang L. Q., Nabel G. J. Regulation of gene expression with double-stranded phosphorothioate oligonucleotides. Science. 1990 Nov 16;250(4983):997–1000. doi: 10.1126/science.2237444. [DOI] [PubMed] [Google Scholar]
  4. Blommers M. J., Walters J. A., Haasnoot C. A., Aelen J. M., van der Marel G. A., van Boom J. H., Hilbers C. W. Effects of base sequence on the loop folding in DNA hairpins. Biochemistry. 1989 Sep 5;28(18):7491–7498. doi: 10.1021/bi00444a049. [DOI] [PubMed] [Google Scholar]
  5. Brown D. A., Kang S. H., Gryaznov S. M., DeDionisio L., Heidenreich O., Sullivan S., Xu X., Nerenberg M. I. Effect of phosphorothioate modification of oligodeoxynucleotides on specific protein binding. J Biol Chem. 1994 Oct 28;269(43):26801–26805. [PubMed] [Google Scholar]
  6. Cereghini S., Blumenfeld M., Yaniv M. A liver-specific factor essential for albumin transcription differs between differentiated and dedifferentiated rat hepatoma cells. Genes Dev. 1988 Aug;2(8):957–974. doi: 10.1101/gad.2.8.957. [DOI] [PubMed] [Google Scholar]
  7. Chavany C., Connell Y., Neckers L. Contribution of sequence and phosphorothioate content to inhibition of cell growth and adhesion caused by c-myc antisense oligomers. Mol Pharmacol. 1995 Oct;48(4):738–746. [PubMed] [Google Scholar]
  8. Chu B. C., Orgel L. E. The stability of different forms of double-stranded decoy DNA in serum and nuclear extracts. Nucleic Acids Res. 1992 Nov 11;20(21):5857–5858. doi: 10.1093/nar/20.21.5857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Clusel C., Ugarte E., Enjolras N., Vasseur M., Blumenfeld M. Ex vivo regulation of specific gene expression by nanomolar concentration of double-stranded dumbbell oligonucleotides. Nucleic Acids Res. 1993 Jul 25;21(15):3405–3411. doi: 10.1093/nar/21.15.3405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Crooke R. M. In vitro toxicology and pharmacokinetics of antisense oligonucleotides. Anticancer Drug Des. 1991 Dec;6(6):609–646. [PubMed] [Google Scholar]
  11. Erie D. A., Jones R. A., Olson W. K., Sinha N. K., Breslauer K. J. Melting behavior of a covalently closed, single-stranded, circular DNA. Biochemistry. 1989 Jan 10;28(1):268–273. doi: 10.1021/bi00427a037. [DOI] [PubMed] [Google Scholar]
  12. Holt J. T. Cutting the chain of command: specific inhibitors of transcription. Antisense Res Dev. 1991 Winter;1(4):365–369. doi: 10.1089/ard.1991.1.365. [DOI] [PubMed] [Google Scholar]
  13. Hélène C. The anti-gene strategy: control of gene expression by triplex-forming-oligonucleotides. Anticancer Drug Des. 1991 Dec;6(6):569–584. [PubMed] [Google Scholar]
  14. Hélène C., Toulmé J. J. Specific regulation of gene expression by antisense, sense and antigene nucleic acids. Biochim Biophys Acta. 1990 Jun 21;1049(2):99–125. doi: 10.1016/0167-4781(90)90031-v. [DOI] [PubMed] [Google Scholar]
  15. Kao S. Y., Calman A. F., Luciw P. A., Peterlin B. M. Anti-termination of transcription within the long terminal repeat of HIV-1 by tat gene product. Nature. 1987 Dec 3;330(6147):489–493. doi: 10.1038/330489a0. [DOI] [PubMed] [Google Scholar]
  16. Lim C. S., Hunt C. A. Sequential staining of short oligonucleotides in polyacrylamide gels with ethidium bromide and methylene blue. Biotechniques. 1994 Oct;17(4):626–628. [PubMed] [Google Scholar]
  17. Osborn L., Kunkel S., Nabel G. J. Tumor necrosis factor alpha and interleukin 1 stimulate the human immunodeficiency virus enhancer by activation of the nuclear factor kappa B. Proc Natl Acad Sci U S A. 1989 Apr;86(7):2336–2340. doi: 10.1073/pnas.86.7.2336. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Reith W., Barras E., Satola S., Kobr M., Reinhart D., Sanchez C. H., Mach B. Cloning of the major histocompatibility complex class II promoter binding protein affected in a hereditary defect in class II gene regulation. Proc Natl Acad Sci U S A. 1989 Jun;86(11):4200–4204. doi: 10.1073/pnas.86.11.4200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Reith W., Ucla C., Barras E., Gaud A., Durand B., Herrero-Sanchez C., Kobr M., Mach B. RFX1, a transactivator of hepatitis B virus enhancer I, belongs to a novel family of homodimeric and heterodimeric DNA-binding proteins. Mol Cell Biol. 1994 Feb;14(2):1230–1244. doi: 10.1128/mcb.14.2.1230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Senior M. M., Jones R. A., Breslauer K. J. Influence of loop residues on the relative stabilities of DNA hairpin structures. Proc Natl Acad Sci U S A. 1988 Sep;85(17):6242–6246. doi: 10.1073/pnas.85.17.6242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Siegrist C. A., Durand B., Emery P., David E., Hearing P., Mach B., Reith W. RFX1 is identical to enhancer factor C and functions as a transactivator of the hepatitis B virus enhancer. Mol Cell Biol. 1993 Oct;13(10):6375–6384. doi: 10.1128/mcb.13.10.6375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Steimle V., Durand B., Barras E., Zufferey M., Hadam M. R., Mach B., Reith W. A novel DNA-binding regulatory factor is mutated in primary MHC class II deficiency (bare lymphocyte syndrome). Genes Dev. 1995 May 1;9(9):1021–1032. doi: 10.1101/gad.9.9.1021. [DOI] [PubMed] [Google Scholar]
  23. Tanaka H., Vickart P., Bertrand J. R., Rayner B., Morvan F., Imbach J. L., Paulin D., Malvy C. Sequence-specific interaction of alpha-beta-anomeric double-stranded DNA with the p50 subunit of NF kappa B: application to the decoy approach. Nucleic Acids Res. 1994 Aug 11;22(15):3069–3074. doi: 10.1093/nar/22.15.3069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Teasdale R. M., Matson S. J., Fisher E., Krieg A. M. Inhibition of T4 polynucleotide kinase activity by phosphorothioate and chimeric oligodeoxynucleotides. Antisense Res Dev. 1994 Winter;4(4):295–297. doi: 10.1089/ard.1994.4.295. [DOI] [PubMed] [Google Scholar]
  25. Teramoto N., Tonoyama Y., Akagi T., Sarker A. B., Yoshino T., Yamadori I., Takahashi K. Application of polymerase chain reaction (PCR) to the microscopically identified cells on the slides: evaluation of specificity and sensitivity of single cell PCR. Acta Med Okayama. 1994 Aug;48(4):189–193. doi: 10.18926/AMO/31091. [DOI] [PubMed] [Google Scholar]
  26. Voliva C. F., Aronheim A., Walker M. D., Peterlin B. M. B-cell factor 1 is required for optimal expression of the DRA promoter in B cells. Mol Cell Biol. 1992 May;12(5):2383–2390. doi: 10.1128/mcb.12.5.2383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Voliva C. F., Jabrane-Ferrat N., Peterlin B. M. The function of the octamer-binding site in the DRA promoter. Immunogenetics. 1996;43(1-2):20–26. doi: 10.1007/BF00186600. [DOI] [PubMed] [Google Scholar]
  28. Wemmer D. E., Benight A. S. Preparation and melting of single strand circular DNA loops. Nucleic Acids Res. 1985 Dec 9;13(23):8611–8621. doi: 10.1093/nar/13.23.8611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Zhang X. Y., Jabrane-Ferrat N., Asiedu C. K., Samac S., Peterlin B. M., Ehrlich M. The major histocompatibility complex class II promoter-binding protein RFX (NF-X) is a methylated DNA-binding protein. Mol Cell Biol. 1993 Nov;13(11):6810–6818. doi: 10.1128/mcb.13.11.6810. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES