Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Feb 1;25(3):648–653. doi: 10.1093/nar/25.3.648

Metal ion interaction with cosubstrate in self-splicing of group I introns.

A S Sjögren 1, E Pettersson 1, B M Sjöberg 1, R Strömberg 1
PMCID: PMC146470  PMID: 9016608

Abstract

The catalytic mechanism for self-splicing of the group I intron in the pre-mRNA from the nrdB gene in bacteriophage T4 has been investigated using 2'-amino- 2'-deoxyguanosine or guanosine as cosubstrates in the presence of Mg2+, Mn2+and Zn2+. The results show that a divalent metal ion interacts with the cosubstrate and thereby influences the efficiency of catalysis in the first step of splicing. This suggests the existence of a metal ion that catalyses the nucleophilic attack of the cosubstrate. Of particular significance is that the transesterification reactions of the first step of splicing with 2'-amino-2'-deoxyguanosine as cosubstrate are more efficient in mixtures containing either Mn2+or Zn2+together with Mg2+than with only magnesium ions present. The experiments in metal ion mixtures show that two (or more) metal ions are crucial for the self-splicing of group I introns and suggest the possibility that more than one of these have a direct catalytic role. A working model for a two-metal-ion mechanism in the transesterification steps is suggested.

Full Text

The Full Text of this article is available as a PDF (125.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bass B. L., Cech T. R. Ribozyme inhibitors: deoxyguanosine and dideoxyguanosine are competitive inhibitors of self-splicing of the Tetrahymena ribosomal ribonucleic acid precursor. Biochemistry. 1986 Aug 12;25(16):4473–4477. doi: 10.1021/bi00364a001. [DOI] [PubMed] [Google Scholar]
  2. Bass B. L., Cech T. R. Specific interaction between the self-splicing RNA of Tetrahymena and its guanosine substrate: implications for biological catalysis by RNA. 1984 Apr 26-May 2Nature. 308(5962):820–826. doi: 10.1038/308820a0. [DOI] [PubMed] [Google Scholar]
  3. Breslow R., Huang D. L. Effects of metal ions, including Mg2+ and lanthanides, on the cleavage of ribonucleotides and RNA model compounds. Proc Natl Acad Sci U S A. 1991 May 15;88(10):4080–4083. doi: 10.1073/pnas.88.10.4080. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cech T. R., Herschlag D., Piccirilli J. A., Pyle A. M. RNA catalysis by a group I ribozyme. Developing a model for transition state stabilization. J Biol Chem. 1992 Sep 5;267(25):17479–17482. [PubMed] [Google Scholar]
  5. Christian E. L., Yarus M. Metal coordination sites that contribute to structure and catalysis in the group I intron from Tetrahymena. Biochemistry. 1993 May 4;32(17):4475–4480. doi: 10.1021/bi00068a001. [DOI] [PubMed] [Google Scholar]
  6. Gott J. M., Shub D. A., Belfort M. Multiple self-splicing introns in bacteriophage T4: evidence from autocatalytic GTP labeling of RNA in vitro. Cell. 1986 Oct 10;47(1):81–87. doi: 10.1016/0092-8674(86)90368-5. [DOI] [PubMed] [Google Scholar]
  7. Herschlag D., Eckstein F., Cech T. R. The importance of being ribose at the cleavage site in the Tetrahymena ribozyme reaction. Biochemistry. 1993 Aug 17;32(32):8312–8321. doi: 10.1021/bi00083a035. [DOI] [PubMed] [Google Scholar]
  8. Herschlag D., Khosla M. Comparison of pH dependencies of the Tetrahymena ribozyme reactions with RNA 2'-substituted and phosphorothioate substrates reveals a rate-limiting conformational step. Biochemistry. 1994 May 3;33(17):5291–5297. doi: 10.1021/bi00183a036. [DOI] [PubMed] [Google Scholar]
  9. Herschlag D., Piccirilli J. A., Cech T. R. Ribozyme-catalyzed and nonenzymatic reactions of phosphate diesters: rate effects upon substitution of sulfur for a nonbridging phosphoryl oxygen atom. Biochemistry. 1991 May 21;30(20):4844–4854. doi: 10.1021/bi00234a003. [DOI] [PubMed] [Google Scholar]
  10. Hobbs J. B., Eckstein F. A general method for the synthesis of 2'-azido-2'-deoxy- and 2'-amino-2'-deoxyribofuranosyl purines. J Org Chem. 1977 Feb 18;42(4):714–719. doi: 10.1021/jo00424a031. [DOI] [PubMed] [Google Scholar]
  11. McSwiggen J. A., Cech T. R. Stereochemistry of RNA cleavage by the Tetrahymena ribozyme and evidence that the chemical step is not rate-limiting. Science. 1989 May 12;244(4905):679–683. doi: 10.1126/science.2470150. [DOI] [PubMed] [Google Scholar]
  12. Moran S., Kierzek R., Turner D. H. Binding of guanosine and 3' splice site analogues to a group I ribozyme: interactions with functional groups of guanosine and with additional nucleotides. Biochemistry. 1993 May 18;32(19):5247–5256. doi: 10.1021/bi00070a037. [DOI] [PubMed] [Google Scholar]
  13. Nilsson L., Ahgren-Stålhandske A., Sjögren A. S., Hahne S., Sjöberg B. M. Three-dimensional model and molecular dynamics simulation of the active site of the self-splicing intervening sequence of the bacteriophage T4 nrdB messenger RNA. Biochemistry. 1990 Nov 13;29(45):10317–10322. doi: 10.1021/bi00497a005. [DOI] [PubMed] [Google Scholar]
  14. Piccirilli J. A., Vyle J. S., Caruthers M. H., Cech T. R. Metal ion catalysis in the Tetrahymena ribozyme reaction. Nature. 1993 Jan 7;361(6407):85–88. doi: 10.1038/361085a0. [DOI] [PubMed] [Google Scholar]
  15. Rajagopal J., Doudna J. A., Szostak J. W. Stereochemical course of catalysis by the Tetrahymena ribozyme. Science. 1989 May 12;244(4905):692–694. doi: 10.1126/science.2470151. [DOI] [PubMed] [Google Scholar]
  16. Setlik R. F., Garduno-Juarez R., Manchester J. I., Shibata M., Ornstein R. L., Rein R. Modeling study on the cleavage step of the self-splicing reaction in group I introns. J Biomol Struct Dyn. 1993 Jun;10(6):945–972. doi: 10.1080/07391102.1993.10508689. [DOI] [PubMed] [Google Scholar]
  17. Shub D. A., Gott J. M., Xu M. Q., Lang B. F., Michel F., Tomaschewski J., Pedersen-Lane J., Belfort M. Structural conservation among three homologous introns of bacteriophage T4 and the group I introns of eukaryotes. Proc Natl Acad Sci U S A. 1988 Feb;85(4):1151–1155. doi: 10.1073/pnas.85.4.1151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sjöberg B. M., Hahne S., Mathews C. Z., Mathews C. K., Rand K. N., Gait M. J. The bacteriophage T4 gene for the small subunit of ribonucleotide reductase contains an intron. EMBO J. 1986 Aug;5(8):2031–2036. doi: 10.1002/j.1460-2075.1986.tb04460.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Steitz T. A., Steitz J. A. A general two-metal-ion mechanism for catalytic RNA. Proc Natl Acad Sci U S A. 1993 Jul 15;90(14):6498–6502. doi: 10.1073/pnas.90.14.6498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Streicher B., Westhof E., Schroeder R. The environment of two metal ions surrounding the splice site of a group I intron. EMBO J. 1996 May 15;15(10):2556–2564. [PMC free article] [PubMed] [Google Scholar]
  21. Strömberg R., Hahne S., Sjögren A. S., Sjöberg B. M. 2'-Amino-2'-deoxyguanosine is a cofactor for self-splicing in group I catalytic RNA. Biochem Biophys Res Commun. 1992 Mar 16;183(2):842–848. doi: 10.1016/0006-291x(92)90560-8. [DOI] [PubMed] [Google Scholar]
  22. Suh E., Waring R. B. A phosphorothioate at the 3' splice-site inhibits the second splicing step in a group I intron. Nucleic Acids Res. 1992 Dec 11;20(23):6303–6309. doi: 10.1093/nar/20.23.6303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Uchimaru T., Uebayasi M., Tanabe K., Taira K. Theoretical analyses on the role of Mg2+ ions in ribozyme reactions. FASEB J. 1993 Jan;7(1):137–142. doi: 10.1096/fasebj.7.1.8422960. [DOI] [PubMed] [Google Scholar]
  24. Yarus M. How many catalytic RNAs? Ions and the Cheshire cat conjecture. FASEB J. 1993 Jan;7(1):31–39. doi: 10.1096/fasebj.7.1.8422972. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES