Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Feb 1;25(3):617–625. doi: 10.1093/nar/25.3.617

Divalent transition metal cations counteract potassium-induced quadruplex assembly of oligo(dG) sequences.

S W Blume 1, V Guarcello 1, W Zacharias 1, D M Miller 1
PMCID: PMC146479  PMID: 9016604

Abstract

Nucleic acids containing tracts of contiguous guanines tend to self-associate into four-stranded (quadruplex) structures, based on reciprocal non-Watson-Crick (G*G*G*G) hydrogen bonds. The quadruplex structure is induced/stabilized by monovalent cations, particularly potassium. Using circular dichroism, we have determined that the induction/stabilization of quadruplex structure by K+is specifically counteracted by low concentrations of Mn2+(4-10 mM), Co2+(0.3-2 mM) or Ni2+(0.3-0.8 mM). G-Tract-containing single strands are also capable of sequence-specific non-Watson-Crick interaction with d(G. C)-tract-containing (target) sequences within double-stranded DNA. The assembly of these G*G.C-based triple helical structures is supported by magnesium, but is potently inhibited by potassium due to sequestration of the G-tract single strand into quadruplex structure. We have used DNase I protection assays to demonstrate that competition between quadruplex self-association and triplex assembly is altered in the presence of Mn2+, Co2+or Ni2+. By specifically counteracting the induction/stabilization of quadruplex structure by potassium, these divalent transition metal cations allow triplex formation in the presence of K+and shift the position of equilibrium so that a very high proportion of triplex target sites are bound. Thus, variation of the cation environment can differentially promote the assembly of multistranded nucleic acid structural alternatives.

Full Text

The Full Text of this article is available as a PDF (211.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agazie Y. M., Lee J. S., Burkholder G. D. Characterization of a new monoclonal antibody to triplex DNA and immunofluorescent staining of mammalian chromosomes. J Biol Chem. 1994 Mar 4;269(9):7019–7023. [PubMed] [Google Scholar]
  2. Arnott S., Chandrasekaran R., Marttila C. M. Structures for polyinosinic acid and polyguanylic acid. Biochem J. 1974 Aug;141(2):537–543. doi: 10.1042/bj1410537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Arnott S., Selsing E. Structures for the polynucleotide complexes poly(dA) with poly (dT) and poly(dT) with poly(dA) with poly (dT). J Mol Biol. 1974 Sep 15;88(2):509–521. doi: 10.1016/0022-2836(74)90498-7. [DOI] [PubMed] [Google Scholar]
  4. Awang G., Sen D. Mode of dimerization of HIV-1 genomic RNA. Biochemistry. 1993 Oct 26;32(42):11453–11457. doi: 10.1021/bi00093a024. [DOI] [PubMed] [Google Scholar]
  5. Bacolla A., Ulrich M. J., Larson J. E., Ley T. J., Wells R. D. An intramolecular triplex in the human gamma-globin 5'-flanking region is altered by point mutations associated with hereditary persistence of fetal hemoglobin. J Biol Chem. 1995 Oct 13;270(41):24556–24563. doi: 10.1074/jbc.270.41.24556. [DOI] [PubMed] [Google Scholar]
  6. Beal P. A., Dervan P. B. Second structural motif for recognition of DNA by oligonucleotide-directed triple-helix formation. Science. 1991 Mar 15;251(4999):1360–1363. doi: 10.1126/science.2003222. [DOI] [PubMed] [Google Scholar]
  7. Bianchi A., Wells R. D., Heintz N. H., Caddle M. S. Sequences near the origin of replication of the DHFR locus of Chinese hamster ovary cells adopt left-handed Z-DNA and triplex structures. J Biol Chem. 1990 Dec 15;265(35):21789–21796. [PubMed] [Google Scholar]
  8. Blume S. W., Gee J. E., Shrestha K., Miller D. M. Triple helix formation by purine-rich oligonucleotides targeted to the human dihydrofolate reductase promoter. Nucleic Acids Res. 1992 Apr 11;20(7):1777–1784. doi: 10.1093/nar/20.7.1777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Blume S. W., Snyder R. C., Ray R., Thomas S., Koller C. A., Miller D. M. Mithramycin inhibits SP1 binding and selectively inhibits transcriptional activity of the dihydrofolate reductase gene in vitro and in vivo. J Clin Invest. 1991 Nov;88(5):1613–1621. doi: 10.1172/JCI115474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Braunlin W. H., Nordenskiöld L. A potassium-39 NMR study of potassium binding to double-helical DNA. Eur J Biochem. 1984 Jul 2;142(1):133–137. doi: 10.1111/j.1432-1033.1984.tb08260.x. [DOI] [PubMed] [Google Scholar]
  11. Chandler S. P., Strekowski L., Wilson W. D., Fox K. R. Footprinting studies on ligands which stabilize DNA triplexes: effects on stringency within a parallel triple helix. Biochemistry. 1995 May 30;34(21):7234–7242. doi: 10.1021/bi00021a039. [DOI] [PubMed] [Google Scholar]
  12. Chen M. J., Shimada T., Moulton A. D., Cline A., Humphries R. K., Maizel J., Nienhuis A. W. The functional human dihydrofolate reductase gene. J Biol Chem. 1984 Mar 25;259(6):3933–3943. [PubMed] [Google Scholar]
  13. Cheng A. J., Van Dyke M. W. Monovalent cation effects on intermolecular purine-purine-pyrimidine triple-helix formation. Nucleic Acids Res. 1993 Dec 11;21(24):5630–5635. doi: 10.1093/nar/21.24.5630. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Cheong C., Moore P. B. Solution structure of an unusually stable RNA tetraplex containing G- and U-quartet structures. Biochemistry. 1992 Sep 15;31(36):8406–8414. doi: 10.1021/bi00151a003. [DOI] [PubMed] [Google Scholar]
  15. Cooney M., Czernuszewicz G., Postel E. H., Flint S. J., Hogan M. E. Site-specific oligonucleotide binding represses transcription of the human c-myc gene in vitro. Science. 1988 Jul 22;241(4864):456–459. doi: 10.1126/science.3293213. [DOI] [PubMed] [Google Scholar]
  16. Dagle J. M., Weeks D. L. Positively charged oligonucleotides overcome potassium-mediated inhibition of triplex DNA formation. Nucleic Acids Res. 1996 Jun 1;24(11):2143–2149. doi: 10.1093/nar/24.11.2143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Dickerson R. E., Drew H. R., Conner B. N., Kopka M. L., Pjura P. E. Helix geometry and hydration in A-DNA, B-DNA, and Z-DNA. Cold Spring Harb Symp Quant Biol. 1983;47(Pt 1):13–24. doi: 10.1101/sqb.1983.047.01.004. [DOI] [PubMed] [Google Scholar]
  18. Durland R. H., Kessler D. J., Gunnell S., Duvic M., Pettitt B. M., Hogan M. E. Binding of triple helix forming oligonucleotides to sites in gene promoters. Biochemistry. 1991 Sep 24;30(38):9246–9255. doi: 10.1021/bi00102a017. [DOI] [PubMed] [Google Scholar]
  19. EICHHORN G. L. Metal ions as stabilizers or destabilizers of the deoxyriboucleic acid structure. Nature. 1962 May 5;194:474–475. doi: 10.1038/194474a0. [DOI] [PubMed] [Google Scholar]
  20. Ebbinghaus S. W., Gee J. E., Rodu B., Mayfield C. A., Sanders G., Miller D. M. Triplex formation inhibits HER-2/neu transcription in vitro. J Clin Invest. 1993 Nov;92(5):2433–2439. doi: 10.1172/JCI116850. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Eichhorn G. L., Shin Y. A. Interaction of metal ions with polynucleotides and related compounds. XII. The relative effect of various metal ions on DNA helicity. J Am Chem Soc. 1968 Dec 18;90(26):7323–7328. doi: 10.1021/ja01028a024. [DOI] [PubMed] [Google Scholar]
  22. Fang G., Cech T. R. Characterization of a G-quartet formation reaction promoted by the beta-subunit of the Oxytricha telomere-binding protein. Biochemistry. 1993 Nov 2;32(43):11646–11657. doi: 10.1021/bi00094a022. [DOI] [PubMed] [Google Scholar]
  23. Firulli A. B., Maibenco D. C., Kinniburgh A. J. Triplex forming ability of a c-myc promoter element predicts promoter strength. Arch Biochem Biophys. 1994 Apr;310(1):236–242. doi: 10.1006/abbi.1994.1162. [DOI] [PubMed] [Google Scholar]
  24. Fox K. R. Formation of DNA triple helices incorporating blocks of G.GC and T.AT triplets using short acridine-linked oligonucleotides. Nucleic Acids Res. 1994 Jun 11;22(11):2016–2021. doi: 10.1093/nar/22.11.2016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Frantz J. D., Gilbert W. A novel yeast gene product, G4p1, with a specific affinity for quadruplex nucleic acids. J Biol Chem. 1995 Sep 1;270(35):20692–20697. doi: 10.1074/jbc.270.35.20692. [DOI] [PubMed] [Google Scholar]
  26. François J. C., Saison-Behmoaras T., Hélène C. Sequence-specific recognition of the major groove of DNA by oligodeoxynucleotides via triple helix formation. Footprinting studies. Nucleic Acids Res. 1988 Dec 23;16(24):11431–11440. doi: 10.1093/nar/16.24.11431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Fry M., Loeb L. A. The fragile X syndrome d(CGG)n nucleotide repeats form a stable tetrahelical structure. Proc Natl Acad Sci U S A. 1994 May 24;91(11):4950–4954. doi: 10.1073/pnas.91.11.4950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Gee J. E., Blume S., Snyder R. C., Ray R., Miller D. M. Triplex formation prevents Sp1 binding to the dihydrofolate reductase promoter. J Biol Chem. 1992 Jun 5;267(16):11163–11167. [PubMed] [Google Scholar]
  29. Gee J. E., Revankar G. R., Rao T. S., Hogan M. E. Triplex formation at the rat neu gene utilizing imidazole and 2'-deoxy-6-thioguanosine base substitutions. Biochemistry. 1995 Feb 14;34(6):2042–2048. doi: 10.1021/bi00006a026. [DOI] [PubMed] [Google Scholar]
  30. Giraldo R., Suzuki M., Chapman L., Rhodes D. Promotion of parallel DNA quadruplexes by a yeast telomere binding protein: a circular dichroism study. Proc Natl Acad Sci U S A. 1994 Aug 2;91(16):7658–7662. doi: 10.1073/pnas.91.16.7658. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Guschlbauer W., Chantot J. F., Thiele D. Four-stranded nucleic acid structures 25 years later: from guanosine gels to telomer DNA. J Biomol Struct Dyn. 1990 Dec;8(3):491–511. doi: 10.1080/07391102.1990.10507825. [DOI] [PubMed] [Google Scholar]
  32. Hammond-Kosack M. C., Kilpatrick M. W., Docherty K. The human insulin gene-linked polymorphic region adopts a G-quartet structure in chromatin assembled in vitro. J Mol Endocrinol. 1993 Apr;10(2):121–126. doi: 10.1677/jme.0.0100121. [DOI] [PubMed] [Google Scholar]
  33. Hampel K. J., Crosson P., Lee J. S. Polyamines favor DNA triplex formation at neutral pH. Biochemistry. 1991 May 7;30(18):4455–4459. doi: 10.1021/bi00232a012. [DOI] [PubMed] [Google Scholar]
  34. Hardin C. C., Henderson E., Watson T., Prosser J. K. Monovalent cation induced structural transitions in telomeric DNAs: G-DNA folding intermediates. Biochemistry. 1991 May 7;30(18):4460–4472. doi: 10.1021/bi00232a013. [DOI] [PubMed] [Google Scholar]
  35. Hardin C. C., Watson T., Corregan M., Bailey C. Cation-dependent transition between the quadruplex and Watson-Crick hairpin forms of d(CGCG3GCG). Biochemistry. 1992 Jan 28;31(3):833–841. doi: 10.1021/bi00118a028. [DOI] [PubMed] [Google Scholar]
  36. Huizenga D. E., Szostak J. W. A DNA aptamer that binds adenosine and ATP. Biochemistry. 1995 Jan 17;34(2):656–665. doi: 10.1021/bi00002a033. [DOI] [PubMed] [Google Scholar]
  37. Kennedy S. D., Bryant R. G. Manganese-deoxyribonucleic acid binding modes. Nuclear magnetic relaxation dispersion results. Biophys J. 1986 Oct;50(4):669–676. doi: 10.1016/S0006-3495(86)83507-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Kiyama R., Camerini-Otero R. D. A triplex DNA-binding protein from human cells: purification and characterization. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10450–10454. doi: 10.1073/pnas.88.23.10450. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Klobutcher L. A. Developmentally excised DNA sequences in Euplotes crassus capable of forming G quartets. Proc Natl Acad Sci U S A. 1995 Mar 14;92(6):1979–1983. doi: 10.1073/pnas.92.6.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Kohwi Y., Kohwi-Shigematsu T. Magnesium ion-dependent triple-helix structure formed by homopurine-homopyrimidine sequences in supercoiled plasmid DNA. Proc Natl Acad Sci U S A. 1988 Jun;85(11):3781–3785. doi: 10.1073/pnas.85.11.3781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Kohwi Y., Malkhosyan S. R., Kohwi-Shigematsu T. Intramolecular dG.dG.dC triplex detected in Escherichia coli cells. J Mol Biol. 1992 Feb 20;223(4):817–822. doi: 10.1016/0022-2836(92)90242-c. [DOI] [PubMed] [Google Scholar]
  42. Kohwi Y., Panchenko Y. Transcription-dependent recombination induced by triple-helix formation. Genes Dev. 1993 Sep;7(9):1766–1778. doi: 10.1101/gad.7.9.1766. [DOI] [PubMed] [Google Scholar]
  43. Latimer L. J., Payton N., Forsyth G., Lee J. S. The binding of analogues of coralyne and related heterocyclics to DNA triplexes. Biochem Cell Biol. 1995 Jan-Feb;73(1-2):11–18. doi: 10.1139/o95-002. [DOI] [PubMed] [Google Scholar]
  44. Lee J. S., Ashley C., Hampel K. J., Bradley R., Scraba D. G. A stable interaction between separated pyrimidine.purine tracts in circular DNA. J Mol Biol. 1995 Sep 22;252(3):283–288. doi: 10.1006/jmbi.1995.0495. [DOI] [PubMed] [Google Scholar]
  45. Lee J. S., Burkholder G. D., Latimer L. J., Haug B. L., Braun R. P. A monoclonal antibody to triplex DNA binds to eucaryotic chromosomes. Nucleic Acids Res. 1987 Feb 11;15(3):1047–1061. doi: 10.1093/nar/15.3.1047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Lee J. S., Latimer L. J., Reid R. S. A cooperative conformational change in duplex DNA induced by Zn2+ and other divalent metal ions. Biochem Cell Biol. 1993 Mar-Apr;71(3-4):162–168. doi: 10.1139/o93-026. [DOI] [PubMed] [Google Scholar]
  47. Lee J. S. The stability of polypurine tetraplexes in the presence of mono- and divalent cations. Nucleic Acids Res. 1990 Oct 25;18(20):6057–6060. doi: 10.1093/nar/18.20.6057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Letai A. G., Palladino M. A., Fromm E., Rizzo V., Fresco J. R. Specificity in formation of triple-stranded nucleic acid helical complexes: studies with agarose-linked polyribonucleotide affinity columns. Biochemistry. 1988 Dec 27;27(26):9108–9112. doi: 10.1021/bi00426a007. [DOI] [PubMed] [Google Scholar]
  49. Liu Z., Lee A., Gilbert W. Gene disruption of a G4-DNA-dependent nuclease in yeast leads to cellular senescence and telomere shortening. Proc Natl Acad Sci U S A. 1995 Jun 20;92(13):6002–6006. doi: 10.1073/pnas.92.13.6002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Luck G., Zimmer C. Conformational aspects and reactivity of DNA. Effects of manganese and magnesium ions on interaction with DNA. Eur J Biochem. 1972 Sep 25;29(3):528–536. doi: 10.1111/j.1432-1033.1972.tb02018.x. [DOI] [PubMed] [Google Scholar]
  51. Lyamichev V. I., Mirkin S. M., Frank-Kamenetskii M. D., Cantor C. R. A stable complex between homopyrimidine oligomers and the homologous regions of duplex DNAs. Nucleic Acids Res. 1988 Mar 25;16(5):2165–2178. doi: 10.1093/nar/16.5.2165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Macaya R. F., Waldron J. A., Beutel B. A., Gao H., Joesten M. E., Yang M., Patel R., Bertelsen A. H., Cook A. F. Structural and functional characterization of potent antithrombotic oligonucleotides possessing both quadruplex and duplex motifs. Biochemistry. 1995 Apr 4;34(13):4478–4492. doi: 10.1021/bi00013a041. [DOI] [PubMed] [Google Scholar]
  53. Manning G. S. On the application of polyelectrolyte "limiting laws" to the helix-coil transition of DNA. II. The effect of Mg++ counterions. Biopolymers. 1972;11(5):951–955. doi: 10.1002/bip.1972.360110503. [DOI] [PubMed] [Google Scholar]
  54. Marck C., Thiele D. Poly(dG).poly(dC) at neutral and alkaline pH: the formation of triple stranded poly(dG).poly(dG).poly(dC). Nucleic Acids Res. 1978 Mar;5(3):1017–1028. doi: 10.1093/nar/5.3.1017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Marck C., Thiele D., Schneider C., Guschlbauer W. Protonated polynucleotides structures - 22.CD study of the acid-base titration of poly(dG).poly(dC). Nucleic Acids Res. 1978 Jun;5(6):1979–1996. doi: 10.1093/nar/5.6.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Mayfield C., Squibb M., Miller D. Inhibition of nuclear protein binding to the human Ki-ras promoter by triplex-forming oligonucleotides. Biochemistry. 1994 Mar 22;33(11):3358–3363. doi: 10.1021/bi00177a029. [DOI] [PubMed] [Google Scholar]
  57. McCall M., Brown T., Kennard O. The crystal structure of d(G-G-G-G-C-C-C-C). A model for poly(dG).poly(dC). J Mol Biol. 1985 Jun 5;183(3):385–396. doi: 10.1016/0022-2836(85)90009-9. [DOI] [PubMed] [Google Scholar]
  58. Mercola D., Cohen J. S. Antisense approaches to cancer gene therapy. Cancer Gene Ther. 1995 Mar;2(1):47–59. [PubMed] [Google Scholar]
  59. Milligan J. F., Krawczyk S. H., Wadwani S., Matteucci M. D. An anti-parallel triple helix motif with oligodeoxynucleotides containing 2'-deoxyguanosine and 7-deaza-2'-deoxyxanthosine. Nucleic Acids Res. 1993 Jan 25;21(2):327–333. doi: 10.1093/nar/21.2.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Miura T., Thomas G. J., Jr Structure and dynamics of interstrand guanine association in quadruplex telomeric DNA. Biochemistry. 1995 Jul 25;34(29):9645–9654. doi: 10.1021/bi00029a042. [DOI] [PubMed] [Google Scholar]
  61. Morgan A. R., Wells R. D. Specificity of the three-stranded complex formation between double-stranded DNA and single-stranded RNA containing repeating nucleotide sequences. J Mol Biol. 1968 Oct 14;37(1):63–80. doi: 10.1016/0022-2836(68)90073-9. [DOI] [PubMed] [Google Scholar]
  62. Murchie A. I., Lilley D. M. Tetraplex folding of telomere sequences and the inclusion of adenine bases. EMBO J. 1994 Feb 15;13(4):993–1001. doi: 10.1002/j.1460-2075.1994.tb06344.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Musso M., Van Dyke M. W. Polyamine effects on purine-purine-pyrimidine triple helix formation by phosphodiester and phosphorothioate oligodeoxyribonucleotides. Nucleic Acids Res. 1995 Jun 25;23(12):2320–2327. doi: 10.1093/nar/23.12.2320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Olivas W. M., Maher L. J., 3rd Overcoming potassium-mediated triplex inhibition. Nucleic Acids Res. 1995 Jun 11;23(11):1936–1941. doi: 10.1093/nar/23.11.1936. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Panyutin I. G., Wells R. D. Nodule DNA in the (GA)37.(CT)37 insert in superhelical plasmids. J Biol Chem. 1992 Mar 15;267(8):5495–5501. [PubMed] [Google Scholar]
  66. Paulsen M. D., Anderson C. F., Record M. T., Jr Counterion exchange reactions on DNA: Monte Carlo and Poisson-Boltzmann analysis. Biopolymers. 1988 Aug;27(8):1249–1265. doi: 10.1002/bip.360270806. [DOI] [PubMed] [Google Scholar]
  67. Pearson A. M., Rich A., Krieger M. Polynucleotide binding to macrophage scavenger receptors depends on the formation of base-quartet-stabilized four-stranded helices. J Biol Chem. 1993 Feb 15;268(5):3546–3554. [PubMed] [Google Scholar]
  68. Pilch D. S., Levenson C., Shafer R. H. Structure, stability, and thermodynamics of a short intermolecular purine-purine-pyrimidine triple helix. Biochemistry. 1991 Jun 25;30(25):6081–6088. doi: 10.1021/bi00239a001. [DOI] [PubMed] [Google Scholar]
  69. Postel E. H., Mango S. E., Flint S. J. A nuclease-hypersensitive element of the human c-myc promoter interacts with a transcription initiation factor. Mol Cell Biol. 1989 Nov;9(11):5123–5133. doi: 10.1128/mcb.9.11.5123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Potaman V. N., Sinden R. R. Stabilization of triple-helical nucleic acids by basic oligopeptides. Biochemistry. 1995 Nov 14;34(45):14885–14892. doi: 10.1021/bi00045a033. [DOI] [PubMed] [Google Scholar]
  71. Potaman V. N., Soyfer V. N. Divalent metal cations upon coordination to the N7 of purines differentially stabilize the PyPuPu DNA triplex due to unequal Hoogsteen-type hydrogen bond enhancement. J Biomol Struct Dyn. 1994 Apr;11(5):1035–1040. doi: 10.1080/07391102.1994.10508050. [DOI] [PubMed] [Google Scholar]
  72. Radhakrishnan I., de los Santos C., Patel D. J. Nuclear magnetic resonance structural studies of intramolecular purine.purine.pyrimidine DNA triplexes in solution. Base triple pairing alignments and strand direction. J Mol Biol. 1991 Oct 20;221(4):1403–1418. [PubMed] [Google Scholar]
  73. Rao T. S., Durland R. H., Seth D. M., Myrick M. A., Bodepudi V., Revankar G. R. Incorporation of 2'-deoxy-6-thioguanosine into G-rich oligodeoxyribonucleotides inhibits G-tetrad formation and facilitates triplex formation. Biochemistry. 1995 Jan 24;34(3):765–772. doi: 10.1021/bi00003a009. [DOI] [PubMed] [Google Scholar]
  74. Ratajczak M. Z., Kant J. A., Luger S. M., Hijiya N., Zhang J., Zon G., Gewirtz A. M. In vivo treatment of human leukemia in a scid mouse model with c-myb antisense oligodeoxynucleotides. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):11823–11827. doi: 10.1073/pnas.89.24.11823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Reuben J., Gabbay E. J. Binding of manganese(II) to DNA and the competitive effects of metal ions and organic cations. An electron paramagnetic resonance study. Biochemistry. 1975 Mar 25;14(6):1230–1235. doi: 10.1021/bi00677a022. [DOI] [PubMed] [Google Scholar]
  76. Schierer T., Henderson E. A protein from Tetrahymena thermophila that specifically binds parallel-stranded G4-DNA. Biochemistry. 1994 Mar 1;33(8):2240–2246. doi: 10.1021/bi00174a034. [DOI] [PubMed] [Google Scholar]
  77. Sen D., Gilbert W. A sodium-potassium switch in the formation of four-stranded G4-DNA. Nature. 1990 Mar 29;344(6265):410–414. doi: 10.1038/344410a0. [DOI] [PubMed] [Google Scholar]
  78. Sigel H. Isomeric equilibria in complexes of adenosine 5'-triphosphate with divalent metal ions. Solution structures of M(ATP)2- complexes. Eur J Biochem. 1987 May 15;165(1):65–72. doi: 10.1111/j.1432-1033.1987.tb11194.x. [DOI] [PubMed] [Google Scholar]
  79. Sundquist W. I., Heaphy S. Evidence for interstrand quadruplex formation in the dimerization of human immunodeficiency virus 1 genomic RNA. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3393–3397. doi: 10.1073/pnas.90.8.3393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Sundquist W. I., Klug A. Telomeric DNA dimerizes by formation of guanine tetrads between hairpin loops. Nature. 1989 Dec 14;342(6251):825–829. doi: 10.1038/342825a0. [DOI] [PubMed] [Google Scholar]
  81. Ussery D. W., Sinden R. R. Environmental influences on the in vivo level of intramolecular triplex DNA in Escherichia coli. Biochemistry. 1993 Jun 22;32(24):6206–6213. doi: 10.1021/bi00075a013. [DOI] [PubMed] [Google Scholar]
  82. Volkmann S., Jendis J., Frauendorf A., Moelling K. Inhibition of HIV-1 reverse transcription by triple-helix forming oligonucleotides with viral RNA. Nucleic Acids Res. 1995 Apr 11;23(7):1204–1212. doi: 10.1093/nar/23.7.1204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Wang Y., Patel D. J. Guanine residues in d(T2AG3) and d(T2G4) form parallel-stranded potassium cation stabilized G-quadruplexes with anti glycosidic torsion angles in solution. Biochemistry. 1992 Sep 8;31(35):8112–8119. doi: 10.1021/bi00150a002. [DOI] [PubMed] [Google Scholar]
  84. Weisman-Shomer P., Fry M. Stabilization of tetrahelical DNA by the quadruplex DNA binding protein QUAD. Biochem Biophys Res Commun. 1994 Nov 30;205(1):305–311. doi: 10.1006/bbrc.1994.2665. [DOI] [PubMed] [Google Scholar]
  85. Williamson J. R., Raghuraman M. K., Cech T. R. Monovalent cation-induced structure of telomeric DNA: the G-quartet model. Cell. 1989 Dec 1;59(5):871–880. doi: 10.1016/0092-8674(89)90610-7. [DOI] [PubMed] [Google Scholar]
  86. Zacharias W., Larson J. E., Klysik J., Stirdivant S. M., Wells R. D. Conditions which cause the right-handed to left-handed DNA conformational transitions. Evidence for several types of left-handed DNA structures in solution. J Biol Chem. 1982 Mar 25;257(6):2775–2782. [PubMed] [Google Scholar]
  87. Zahler A. M., Williamson J. R., Cech T. R., Prescott D. M. Inhibition of telomerase by G-quartet DNA structures. Nature. 1991 Apr 25;350(6320):718–720. doi: 10.1038/350718a0. [DOI] [PubMed] [Google Scholar]
  88. Zimmerman S. B., Cohen G. H., Davies D. R. X-ray fiber diffraction and model-building study of polyguanylic acid and polyinosinic acid. J Mol Biol. 1975 Feb 25;92(2):181–192. doi: 10.1016/0022-2836(75)90222-3. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES