Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Feb 15;25(4):850–860. doi: 10.1093/nar/25.4.850

Quantitative analysis of electrophoresis data: novel curve fitting methodology and its application to the determination of a protein-DNA binding constant.

S E Shadle 1, D F Allen 1, H Guo 1, W K Pogozelski 1, J S Bashkin 1, T D Tullius 1
PMCID: PMC146501  PMID: 9016637

Abstract

A computer program, GelExplorer, which uses a new methodology for obtaining quantitative information about electrophoresis has been developed. It provides a straightforward, easy-to-use graphical interface, and includes a number of features which offer significant advantages over existing methods for quantitative gel analysis. The method uses curve fitting with a nonlinear least-squares optimization to deconvolute overlapping bands. Unlike most curve fitting approaches, the data is treated in two dimensions, fitting all the data across the entire width of the lane. This allows for accurate determination of the intensities of individual, overlapping bands, and in particular allows imperfectly shaped bands to be accurately modeled. Experiments described in this paper demonstrate empirically that the Lorentzian lineshape reproduces the contours of an individual gel band and provides a better model than the Gaussian function for curve fitting of electrophoresis bands. Results from several fitting applications are presented and a discussion of the sources and magnitudes of uncertainties in the results is included. Finally, the method is applied to the quantitative analysis of a hydroxyl radical footprint titration experiment to obtain the free energy of binding of the lambda repressor protein to the OR1 operator DNA sequence.

Full Text

The Full Text of this article is available as a PDF (359.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ackers G. K., Shea M. A., Smith F. R. Free energy coupling within macromolecules. The chemical work of ligand binding at the individual sites in co-operative systems. J Mol Biol. 1983 Oct 15;170(1):223–242. doi: 10.1016/s0022-2836(83)80234-4. [DOI] [PubMed] [Google Scholar]
  2. Beamer L. J., Pabo C. O. Refined 1.8 A crystal structure of the lambda repressor-operator complex. J Mol Biol. 1992 Sep 5;227(1):177–196. doi: 10.1016/0022-2836(92)90690-l. [DOI] [PubMed] [Google Scholar]
  3. Brenowitz M., Senear D. F., Shea M. A., Ackers G. K. Quantitative DNase footprint titration: a method for studying protein-DNA interactions. Methods Enzymol. 1986;130:132–181. doi: 10.1016/0076-6879(86)30011-9. [DOI] [PubMed] [Google Scholar]
  4. Burkhoff A. M., Tullius T. D. The unusual conformation adopted by the adenine tracts in kinetoplast DNA. Cell. 1987 Mar 27;48(6):935–943. doi: 10.1016/0092-8674(87)90702-1. [DOI] [PubMed] [Google Scholar]
  5. Dixon W. J., Hayes J. J., Levin J. R., Weidner M. F., Dombroski B. A., Tullius T. D. Hydroxyl radical footprinting. Methods Enzymol. 1991;208:380–413. doi: 10.1016/0076-6879(91)08021-9. [DOI] [PubMed] [Google Scholar]
  6. Galat A. A procedure for analysis of densitometric spectra. Electrophoresis. 1989 Oct;10(10):659–667. doi: 10.1002/elps.1150101002. [DOI] [PubMed] [Google Scholar]
  7. Galat A., Goldberg I. H. Analysis of microdensitometric data in terms of probability of cleavage of DNA. Comput Appl Biosci. 1987 Nov;3(4):333–338. doi: 10.1093/bioinformatics/3.4.333. [DOI] [PubMed] [Google Scholar]
  8. Gray A. J., Beecher D. E., Olson M. V. Computer-based image analysis of one-dimensional electrophoretic gels used for the separation of DNA restriction fragments. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 2):473–491. doi: 10.1093/nar/12.1part2.473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hansen P. K., Christensen J. H., Nyborg J., Lillelund O., Thøgersen H. C. Dissection of the DNA-binding domain of Xenopus laevis TFIIIA. Quantitative DNase I footprinting analysis of specific complexes between a 5 S RNA gene fragment and N-terminal fragments of TFIIIA containing three, four or five zinc-finger domains. J Mol Biol. 1993 Sep 20;233(2):191–202. doi: 10.1006/jmbi.1993.1499. [DOI] [PubMed] [Google Scholar]
  10. Haselgrove J. C., Lyons G., Rubenstein N., Kelly A. A rapid, inexpensive, quantitative, general-purpose densitometer and its application to one-dimensional gel electrophoretograms. Anal Biochem. 1985 Nov 1;150(2):449–456. doi: 10.1016/0003-2697(85)90534-2. [DOI] [PubMed] [Google Scholar]
  11. Horgan G. W., Glasbey C. A. Uses of digital image analysis in electrophoresis. Electrophoresis. 1995 Mar;16(3):298–305. doi: 10.1002/elps.1150160149. [DOI] [PubMed] [Google Scholar]
  12. Jacot-Descombes A., Todorov K., Hochstrasser D. F., Pellegrini C., Pun T. LaboImage: a workstation environment for research in image processing and analysis. Comput Appl Biosci. 1991 Apr;7(2):225–232. doi: 10.1093/bioinformatics/7.2.225. [DOI] [PubMed] [Google Scholar]
  13. Koblan K. S., Ackers G. K. Energetics of subunit dimerization in bacteriophage lambda cI repressor: linkage to protons, temperature, and KCl. Biochemistry. 1991 Aug 6;30(31):7817–7821. doi: 10.1021/bi00245a022. [DOI] [PubMed] [Google Scholar]
  14. Lewis M., Jeffrey A., Wang J., Ladner R., Ptashne M., Pabo C. O. Structure of the operator-binding domain of bacteriophage lambda repressor: implications for DNA recognition and gene regulation. Cold Spring Harb Symp Quant Biol. 1983;47(Pt 1):435–440. doi: 10.1101/sqb.1983.047.01.051. [DOI] [PubMed] [Google Scholar]
  15. Lutter L. C. Kinetic analysis of deoxyribonuclease I cleavages in the nucleosome core: evidence for a DNA superhelix. J Mol Biol. 1978 Sep 15;124(2):391–420. doi: 10.1016/0022-2836(78)90306-6. [DOI] [PubMed] [Google Scholar]
  16. Maxam A. M., Gilbert W. A new method for sequencing DNA. Proc Natl Acad Sci U S A. 1977 Feb;74(2):560–564. doi: 10.1073/pnas.74.2.560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Morrison T. B., Parkinson S. Quantifying radiolabeled macromolecules and small molecules on a single gel. Biotechniques. 1994 Nov;17(5):922–926. [PubMed] [Google Scholar]
  18. Pabo C. O., Lewis M. The operator-binding domain of lambda repressor: structure and DNA recognition. Nature. 1982 Jul 29;298(5873):443–447. doi: 10.1038/298443a0. [DOI] [PubMed] [Google Scholar]
  19. Pabo C. O., Sauer R. T. Protein-DNA recognition. Annu Rev Biochem. 1984;53:293–321. doi: 10.1146/annurev.bi.53.070184.001453. [DOI] [PubMed] [Google Scholar]
  20. Price M. A., Tullius T. D. How the structure of an adenine tract depends on sequence context: a new model for the structure of TnAn DNA sequences. Biochemistry. 1993 Jan 12;32(1):127–136. doi: 10.1021/bi00052a018. [DOI] [PubMed] [Google Scholar]
  21. Price M. A., Tullius T. D. Using hydroxyl radical to probe DNA structure. Methods Enzymol. 1992;212:194–219. doi: 10.1016/0076-6879(92)12013-g. [DOI] [PubMed] [Google Scholar]
  22. Pulleyblank D. E., Shure M., Vinograd J. The quantitation of fluorescence by photography. Nucleic Acids Res. 1977;4(5):1409–1418. doi: 10.1093/nar/4.5.1409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ribeiro E. A., Sutherland J. C. Resolving power: a quantitative measure of electrophoretic resolution. Anal Biochem. 1993 May 1;210(2):378–388. doi: 10.1006/abio.1993.1211. [DOI] [PubMed] [Google Scholar]
  24. Senear D. F., Brenowitz M. Determination of binding constants for cooperative site-specific protein-DNA interactions using the gel mobility-shift assay. J Biol Chem. 1991 Jul 25;266(21):13661–13671. [PubMed] [Google Scholar]
  25. Senear D. F., Brenowitz M., Shea M. A., Ackers G. K. Energetics of cooperative protein-DNA interactions: comparison between quantitative deoxyribonuclease footprint titration and filter binding. Biochemistry. 1986 Nov 18;25(23):7344–7354. doi: 10.1021/bi00371a016. [DOI] [PubMed] [Google Scholar]
  26. Smith J. M., Thomas D. J. Quantitative analysis of one-dimensional gel electrophoresis profiles. Comput Appl Biosci. 1990 Apr;6(2):93–99. doi: 10.1093/bioinformatics/6.2.93. [DOI] [PubMed] [Google Scholar]
  27. Smith J., Singh M. System for accurate one-dimensional gel analysis including high-resolution quantitative footprinting. Biotechniques. 1996 Jun;20(6):1082–1087. doi: 10.2144/96206bc01. [DOI] [PubMed] [Google Scholar]
  28. Stankus A., Goodisman J., Dabrowiak J. C. Quantitative footprinting analysis of the chromomycin A3--DNA interaction. Biochemistry. 1992 Sep 29;31(38):9310–9318. doi: 10.1021/bi00153a026. [DOI] [PubMed] [Google Scholar]
  29. Tullius T. D., Dombroski B. A. Hydroxyl radical "footprinting": high-resolution information about DNA-protein contacts and application to lambda repressor and Cro protein. Proc Natl Acad Sci U S A. 1986 Aug;83(15):5469–5473. doi: 10.1073/pnas.83.15.5469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Tullius T. D., Dombroski B. A. Iron(II) EDTA used to measure the helical twist along any DNA molecule. Science. 1985 Nov 8;230(4726):679–681. doi: 10.1126/science.2996145. [DOI] [PubMed] [Google Scholar]
  31. Vohradský J., Pánek J. Quantitative analysis of gel electrophoretograms by image analysis and least squares modeling. Electrophoresis. 1993 Jul;14(7):601–612. doi: 10.1002/elps.1150140195. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES