Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Feb 15;25(4):735–742. doi: 10.1093/nar/25.4.735

Cleavage properties of an estrogen-regulated polysomal ribonuclease involved in the destabilization of albumin mRNA.

E Chernokalskaya 1, R Dompenciel 1, D R Schoenberg 1
PMCID: PMC146505  PMID: 9016622

Abstract

Previous work from this laboratory [Dompenciel,R.E., Garnepudi,V.R. and Schoenberg,D.R. (1995)J. Biol. Chem.270, 6108-6118] described the purification and properties of an estrogen-regulated endonuclease isolated from Xenopus liver polysomes that is involved in the destabilization of albumin mRNA. The present study mapped cleavages made by this enzyme onto the secondary structure of the portion of albumin mRNA bearing the major cleavage sites. The predominant cleavages occur in the overlapping APyrUGA sequence AUUGACUGA present in a single-stranded loop region, and in AUUGA located within a bulged AU-rich stem. A structural mutation which converted the major loop cleavage site to a hairpin bearing one APyrUGA element eliminated cleavage at the intact site. This confirms that the polysomal RNase is specific for single-stranded RNA. Additional point mutations in the major loop characterized the nucleoside sequence requirements for cleavage. Finally, snake venom exonuclease was used to demonstrate the polysomal RNase generates products with a 3' hydroxyl. Binding of an estrogen-induced protein to a portion of the 3'UTR of vitellogenin mRNA may be involved in its stabilization by estrogen [Dodson,R.E. and Shapiro,D.J. (1994)Mol. Cell. Biol.14, 3130-3138]. The core binding site for this protein bears the sequence APyrUGA, suggesting that stabilization may be accomplished by occlusion of a cleavage site for the polysomal RNase.

Full Text

The Full Text of this article is available as a PDF (209.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alifano P., Bruni C. B., Carlomagno M. S. Control of mRNA processing and decay in prokaryotes. Genetica. 1994;94(2-3):157–172. doi: 10.1007/BF01443430. [DOI] [PubMed] [Google Scholar]
  2. Binder R., Horowitz J. A., Basilion J. P., Koeller D. M., Klausner R. D., Harford J. B. Evidence that the pathway of transferrin receptor mRNA degradation involves an endonucleolytic cleavage within the 3' UTR and does not involve poly(A) tail shortening. EMBO J. 1994 Apr 15;13(8):1969–1980. doi: 10.1002/j.1460-2075.1994.tb06466.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Binder R., Hwang S. P., Ratnasabapathy R., Williams D. L. Degradation of apolipoprotein II mRNA occurs via endonucleolytic cleavage at 5'-AAU-3'/5'-UAA-3' elements in single-stranded loop domains of the 3'-noncoding region. J Biol Chem. 1989 Oct 5;264(28):16910–16918. [PubMed] [Google Scholar]
  4. Boeck R., Tarun S., Jr, Rieger M., Deardorff J. A., Müller-Auer S., Sachs A. B. The yeast Pan2 protein is required for poly(A)-binding protein-stimulated poly(A)-nuclease activity. J Biol Chem. 1996 Jan 5;271(1):432–438. doi: 10.1074/jbc.271.1.432. [DOI] [PubMed] [Google Scholar]
  5. Brown B. D., Harland R. M. Endonucleolytic cleavage of a maternal homeo box mRNA in Xenopus oocytes. Genes Dev. 1990 Nov;4(11):1925–1935. doi: 10.1101/gad.4.11.1925. [DOI] [PubMed] [Google Scholar]
  6. Brown B. D., Zipkin I. D., Harland R. M. Sequence-specific endonucleolytic cleavage and protection of mRNA in Xenopus and Drosophila. Genes Dev. 1993 Aug;7(8):1620–1631. doi: 10.1101/gad.7.8.1620. [DOI] [PubMed] [Google Scholar]
  7. Carpousis A. J., Van Houwe G., Ehretsmann C., Krisch H. M. Copurification of E. coli RNAase E and PNPase: evidence for a specific association between two enzymes important in RNA processing and degradation. Cell. 1994 Mar 11;76(5):889–900. doi: 10.1016/0092-8674(94)90363-8. [DOI] [PubMed] [Google Scholar]
  8. Caruccio N., Ross J. Purification of a human polyribosome-associated 3' to 5' exoribonuclease. J Biol Chem. 1994 Dec 16;269(50):31814–31821. [PubMed] [Google Scholar]
  9. Chang T. C., Shapiro D. J. An NF1-related vitellogenin activator element mediates transcription from the estrogen-regulated Xenopus laevis vitellogenin promoter. J Biol Chem. 1990 May 15;265(14):8176–8182. [PubMed] [Google Scholar]
  10. Corthésy B., Cardinaux J. R., Claret F. X., Wahli W. A nuclear factor I-like activity and a liver-specific repressor govern estrogen-regulated in vitro transcription from the Xenopus laevis vitellogenin B1 promoter. Mol Cell Biol. 1989 Dec;9(12):5548–5562. doi: 10.1128/mcb.9.12.5548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dodson R. E., Shapiro D. J. An estrogen-inducible protein binds specifically to a sequence in the 3' untranslated region of estrogen-stabilized vitellogenin mRNA. Mol Cell Biol. 1994 May;14(5):3130–3138. doi: 10.1128/mcb.14.5.3130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dompenciel R. E., Garnepudi V. R., Schoenberg D. R. Purification and characterization of an estrogen-regulated Xenopus liver polysomal nuclease involved in the selective destabilization of albumin mRNA. J Biol Chem. 1995 Mar 17;270(11):6108–6118. doi: 10.1074/jbc.270.11.6108. [DOI] [PubMed] [Google Scholar]
  13. Jones D. H., Howard B. H. A rapid method for site-specific mutagenesis and directional subcloning by using the polymerase chain reaction to generate recombinant circles. Biotechniques. 1990 Feb;8(2):178–183. [PubMed] [Google Scholar]
  14. Lowell J. E., Rudner D. Z., Sachs A. B. 3'-UTR-dependent deadenylation by the yeast poly(A) nuclease. Genes Dev. 1992 Nov;6(11):2088–2099. doi: 10.1101/gad.6.11.2088. [DOI] [PubMed] [Google Scholar]
  15. Miczak A., Kaberdin V. R., Wei C. L., Lin-Chao S. Proteins associated with RNase E in a multicomponent ribonucleolytic complex. Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):3865–3869. doi: 10.1073/pnas.93.9.3865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Muhlrad D., Decker C. J., Parker R. Deadenylation of the unstable mRNA encoded by the yeast MFA2 gene leads to decapping followed by 5'-->3' digestion of the transcript. Genes Dev. 1994 Apr 1;8(7):855–866. doi: 10.1101/gad.8.7.855. [DOI] [PubMed] [Google Scholar]
  17. Muhlrad D., Parker R. Premature translational termination triggers mRNA decapping. Nature. 1994 Aug 18;370(6490):578–581. doi: 10.1038/370578a0. [DOI] [PubMed] [Google Scholar]
  18. Nielsen D. A., Shapiro D. J. Estradiol and estrogen receptor-dependent stabilization of a minivitellogenin mRNA lacking 5,100 nucleotides of coding sequence. Mol Cell Biol. 1990 Jan;10(1):371–376. doi: 10.1128/mcb.10.1.371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Nielsen D. A., Shapiro D. J. Insights into hormonal control of messenger RNA stability. Mol Endocrinol. 1990 Jul;4(7):953–957. doi: 10.1210/mend-4-7-953. [DOI] [PubMed] [Google Scholar]
  20. Pastori R. L., Moskaitis J. E., Buzek S. W., Schoenberg D. R. Coordinate estrogen-regulated instability of serum protein-coding messenger RNAs in Xenopus laevis. Mol Endocrinol. 1991 Apr;5(4):461–468. doi: 10.1210/mend-5-4-461. [DOI] [PubMed] [Google Scholar]
  21. Pastori R. L., Moskaitis J. E., Schoenberg D. R. Estrogen-induced ribonuclease activity in Xenopus liver. Biochemistry. 1991 Oct 29;30(43):10490–10498. doi: 10.1021/bi00107a018. [DOI] [PubMed] [Google Scholar]
  22. Pastori R. L., Moskaitis J. E., Smith L. H., Jr, Schoenberg D. R. Estrogen regulation of Xenopus laevis gamma-fibrinogen gene expression. Biochemistry. 1990 Mar 13;29(10):2599–2605. doi: 10.1021/bi00462a024. [DOI] [PubMed] [Google Scholar]
  23. Pastori R. L., Schoenberg D. R. The nuclease that selectively degrades albumin mRNA in vitro associates with Xenopus liver polysomes through the 80S ribosome complex. Arch Biochem Biophys. 1993 Sep;305(2):313–319. doi: 10.1006/abbi.1993.1428. [DOI] [PubMed] [Google Scholar]
  24. Py B., Causton H., Mudd E. A., Higgins C. F. A protein complex mediating mRNA degradation in Escherichia coli. Mol Microbiol. 1994 Nov;14(4):717–729. doi: 10.1111/j.1365-2958.1994.tb01309.x. [DOI] [PubMed] [Google Scholar]
  25. Py B., Higgins C. F., Krisch H. M., Carpousis A. J. A DEAD-box RNA helicase in the Escherichia coli RNA degradosome. Nature. 1996 May 9;381(6578):169–172. doi: 10.1038/381169a0. [DOI] [PubMed] [Google Scholar]
  26. Ross J. mRNA stability in mammalian cells. Microbiol Rev. 1995 Sep;59(3):423–450. doi: 10.1128/mr.59.3.423-450.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Scheper W., Meinsma D., Holthuizen P. E., Sussenbach J. S. Long-range RNA interaction of two sequence elements required for endonucleolytic cleavage of human insulin-like growth factor II mRNAs. Mol Cell Biol. 1995 Jan;15(1):235–245. doi: 10.1128/mcb.15.1.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Schoenberg D. R., Moskaitis J. E., Smith L. H., Jr, Pastori R. L. Extranuclear estrogen-regulated destabilization of Xenopus laevis serum albumin mRNA. Mol Endocrinol. 1989 May;3(5):805–814. doi: 10.1210/mend-3-5-805. [DOI] [PubMed] [Google Scholar]
  29. Shapiro D. J., Barton M. C., McKearin D. M., Chang T. C., Lew D., Blume J., Nielsen D. A., Gould L. Estrogen regulation of gene transcription and mRNA stability. Recent Prog Horm Res. 1989;45:29–64. doi: 10.1016/b978-0-12-571145-6.50006-6. [DOI] [PubMed] [Google Scholar]
  30. Shelness G. S., Williams D. L. Secondary structure analysis of apolipoprotein II mRNA using enzymatic probes and reverse transcriptase. Evaluation of primer extension for high resolution structure mapping of mRNA. J Biol Chem. 1985 Jul 15;260(14):8637–8646. [PubMed] [Google Scholar]
  31. Somoskeöy S., Rao M. N., Slobin L. I. Purification and characterization of a 5' to 3' exoribonuclease from rabbit reticulocytes that degrades capped and uncapped RNAs. Eur J Biochem. 1996 Apr 1;237(1):171–179. doi: 10.1111/j.1432-1033.1996.0171n.x. [DOI] [PubMed] [Google Scholar]
  32. Stoeckle M. Y. Removal of a 3' non-coding sequence is an initial step in degradation of gro alpha mRNA and is regulated by interleukin-1. Nucleic Acids Res. 1992 Mar 11;20(5):1123–1127. doi: 10.1093/nar/20.5.1123. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES