Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Mar 1;25(5):992–994. doi: 10.1093/nar/25.5.992

The p53 status of Chinese hamster V79 cells frequently used for studies on DNA damage and DNA repair.

W Chaung 1, L J Mi 1, R J Boorstein 1
PMCID: PMC146528  PMID: 9023109

Abstract

Chinese hamster lung fibroblast V79 cells have been widely used in studies of DNA damage and DNA repair. Since the p53 gene is involved in normal responses to DNA damage, we have analyzed the molecular genetics and functional status of p53 in V79 cells and primary Chinese hamster embryonic fibroblast (CHEF) cells. The coding product of the p53 gene in CHEF cells was 76 and 75% homologous to human and mouse p53 respectively, and was 95% homologous to the Syrian hamster cells. The V79 p53 sequence contained two point mutations located within a presumed DNA binding domain, as compared with the CHEF cells. Additional immunocytochemical and molecular studies confirmed that the p53 protein in V79 cells was mutated and nonfunctional. Our results indicate that caution should be used in interpreting studies of DNA damage, DNA repair and apoptosis in V79 cells.

Full Text

The Full Text of this article is available as a PDF (35.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Appleman L. J., Uyeki J., Frey A. B. Mouse embryo fibroblasts transformed by activated ras or dominant-negative p53 express cross-reactive tumor rejection antigens. Int J Cancer. 1995 Jun 9;61(6):887–894. doi: 10.1002/ijc.2910610623. [DOI] [PubMed] [Google Scholar]
  2. Barak Y., Oren M. Enhanced binding of a 95 kDa protein to p53 in cells undergoing p53-mediated growth arrest. EMBO J. 1992 Jun;11(6):2115–2121. doi: 10.1002/j.1460-2075.1992.tb05270.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boorstein R. J., Chiu L. N., Teebor G. W. A mammalian cell line deficient in activity of the DNA repair enzyme 5-hydroxymethyluracil-DNA glycosylase is resistant to the toxic effects of the thymidine analog 5-hydroxymethyl-2'-deoxyuridine. Mol Cell Biol. 1992 Dec;12(12):5536–5540. doi: 10.1128/mcb.12.12.5536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Boorstein R. J., Levy D. D., Teebor G. W. Toxicity of 3-aminobenzamide to Chinese hamster cells containing 5-hydroxymethyluracil in their DNA. Cancer Res. 1987 Aug 15;47(16):4372–4377. [PubMed] [Google Scholar]
  5. Bradley M. O., Bhuyan B., Francis M. C., Langenbach R., Peterson A., Huberman E. Mutagenesis by chemical agents in V79 chinese hamster cells: a review and analysis of the literature. A report of the Gene-Tox Program. Mutat Res. 1981 Sep;87(2):81–142. doi: 10.1016/0165-1110(81)90029-4. [DOI] [PubMed] [Google Scholar]
  6. Chaung W., Boorstein R. J. Molecular spectrum of mutations induced by 5-hydroxymethyl-2'-deoxyuridine in (CHO)-PL61 cells. Mutat Res. 1997 Jan 3;373(1):125–137. doi: 10.1016/s0027-5107(96)00197-2. [DOI] [PubMed] [Google Scholar]
  7. Crook T., Marston N. J., Sara E. A., Vousden K. H. Transcriptional activation by p53 correlates with suppression of growth but not transformation. Cell. 1994 Dec 2;79(5):817–827. doi: 10.1016/0092-8674(94)90071-x. [DOI] [PubMed] [Google Scholar]
  8. Harlow E., Williamson N. M., Ralston R., Helfman D. M., Adams T. E. Molecular cloning and in vitro expression of a cDNA clone for human cellular tumor antigen p53. Mol Cell Biol. 1985 Jul;5(7):1601–1610. doi: 10.1128/mcb.5.7.1601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Higgins D. G., Bleasby A. J., Fuchs R. CLUSTAL V: improved software for multiple sequence alignment. Comput Appl Biosci. 1992 Apr;8(2):189–191. doi: 10.1093/bioinformatics/8.2.189. [DOI] [PubMed] [Google Scholar]
  10. Jacobson-Kram D. The reproductive effects assessment group's review of the mutagenicity of vinylidene chloride. Environ Mutagen. 1986;8(1):161–169. doi: 10.1002/em.2860080113. [DOI] [PubMed] [Google Scholar]
  11. Kastan M. B., Onyekwere O., Sidransky D., Vogelstein B., Craig R. W. Participation of p53 protein in the cellular response to DNA damage. Cancer Res. 1991 Dec 1;51(23 Pt 1):6304–6311. [PubMed] [Google Scholar]
  12. Kline E. L., Chiang S. J., Lattora D., Chaung W. Cloning of a promoter-like soybean DNA sequence responding to IAA induction in Escherichia coli K12. J Biochem. 1992 Feb;111(2):168–174. doi: 10.1093/oxfordjournals.jbchem.a123732. [DOI] [PubMed] [Google Scholar]
  13. Lane D. P. Cancer. p53, guardian of the genome. Nature. 1992 Jul 2;358(6381):15–16. doi: 10.1038/358015a0. [DOI] [PubMed] [Google Scholar]
  14. Langenbach R., Hix C., Oglesby L., Allen J. Cell-mediated mutagenesis of Chinese hamster V79 cells and Salmonella typhimurium. Ann N Y Acad Sci. 1983;407:258–266. doi: 10.1111/j.1749-6632.1983.tb47831.x. [DOI] [PubMed] [Google Scholar]
  15. Lee S., Elenbaas B., Levine A., Griffith J. p53 and its 14 kDa C-terminal domain recognize primary DNA damage in the form of insertion/deletion mismatches. Cell. 1995 Jun 30;81(7):1013–1020. doi: 10.1016/s0092-8674(05)80006-6. [DOI] [PubMed] [Google Scholar]
  16. Legros Y., McIntyre P., Soussi T. The cDNA cloning and immunological characterization of hamster p53. Gene. 1992 Mar 15;112(2):247–250. doi: 10.1016/0378-1119(92)90384-2. [DOI] [PubMed] [Google Scholar]
  17. Lowe S. W., Schmitt E. M., Smith S. W., Osborne B. A., Jacks T. p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature. 1993 Apr 29;362(6423):847–849. doi: 10.1038/362847a0. [DOI] [PubMed] [Google Scholar]
  18. Merritt A. J., Potten C. S., Kemp C. J., Hickman J. A., Balmain A., Lane D. P., Hall P. A. The role of p53 in spontaneous and radiation-induced apoptosis in the gastrointestinal tract of normal and p53-deficient mice. Cancer Res. 1994 Feb 1;54(3):614–617. [PubMed] [Google Scholar]
  19. Moro F., Ottaggio L., Bonatti S., Simili M., Miele M., Bozzo S., Abbondandolo A. p53 expression in normal versus transformed mammalian cells. Carcinogenesis. 1995 Oct;16(10):2435–2440. doi: 10.1093/carcin/16.10.2435. [DOI] [PubMed] [Google Scholar]
  20. Oren M. p53: the ultimate tumor suppressor gene? FASEB J. 1992 Oct;6(13):3169–3176. doi: 10.1096/fasebj.6.13.1397838. [DOI] [PubMed] [Google Scholar]
  21. Pennica D., Goeddel D. V., Hayflick J. S., Reich N. C., Anderson C. W., Levine A. J. The amino acid sequence of murine p53 determined from a c-DNA clone. Virology. 1984 Apr 30;134(2):477–482. doi: 10.1016/0042-6822(84)90316-7. [DOI] [PubMed] [Google Scholar]
  22. Peterson A. R., Danenberg P. V., Ibric L. L., Peterson H. Deoxyribonucleoside-induced selective modulation of cytotoxicity and mutagenesis. Basic Life Sci. 1985;31:313–334. doi: 10.1007/978-1-4613-2449-2_19. [DOI] [PubMed] [Google Scholar]
  23. Price B. D., Park S. J. DNA damage increases the levels of MDM2 messenger RNA in wtp53 human cells. Cancer Res. 1994 Feb 15;54(4):896–899. [PubMed] [Google Scholar]
  24. Smith M. L., Chen I. T., Zhan Q., Bae I., Chen C. Y., Gilmer T. M., Kastan M. B., O'Connor P. M., Fornace A. J., Jr Interaction of the p53-regulated protein Gadd45 with proliferating cell nuclear antigen. Science. 1994 Nov 25;266(5189):1376–1380. doi: 10.1126/science.7973727. [DOI] [PubMed] [Google Scholar]
  25. Soussi T., Caron de Fromentel C., May P. Structural aspects of the p53 protein in relation to gene evolution. Oncogene. 1990 Jul;5(7):945–952. [PubMed] [Google Scholar]
  26. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Vogelstein B., Kinzler K. W. p53 function and dysfunction. Cell. 1992 Aug 21;70(4):523–526. doi: 10.1016/0092-8674(92)90421-8. [DOI] [PubMed] [Google Scholar]
  28. Vojtesek B., Bártek J., Midgley C. A., Lane D. P. An immunochemical analysis of the human nuclear phosphoprotein p53. New monoclonal antibodies and epitope mapping using recombinant p53. J Immunol Methods. 1992 Jul 6;151(1-2):237–244. doi: 10.1016/0022-1759(92)90122-a. [DOI] [PubMed] [Google Scholar]
  29. Whitacre C. M., Hashimoto H., Tsai M. L., Chatterjee S., Berger S. J., Berger N. A. Involvement of NAD-poly(ADP-ribose) metabolism in p53 regulation and its consequences. Cancer Res. 1995 Sep 1;55(17):3697–3701. [PubMed] [Google Scholar]
  30. Wolf D., Rotter V. Major deletions in the gene encoding the p53 tumor antigen cause lack of p53 expression in HL-60 cells. Proc Natl Acad Sci U S A. 1985 Feb;82(3):790–794. doi: 10.1073/pnas.82.3.790. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Zakut-Houri R., Oren M., Bienz B., Lavie V., Hazum S., Givol D. A single gene and a pseudogene for the cellular tumour antigen p53. Nature. 1983 Dec 8;306(5943):594–597. doi: 10.1038/306594a0. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES