Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Mar 1;25(5):974–982. doi: 10.1093/nar/25.5.974

Multi-organ characterization of mitochondrial genomic rearrangements in ad libitum and caloric restricted mice show striking somatic mitochondrial DNA rearrangements with age.

S Melov 1, D Hinerfeld 1, L Esposito 1, D C Wallace 1
PMCID: PMC146531  PMID: 9023106

Abstract

Mitochondrial DNA (mtDNA) rearrangements have been shown to accumulate with age in the post-mitotic tissues of a variety of animals and have been hypothesized to result in the age-related decline of mitochondrial bioenergetics leading to tissue and organ failure. Caloric restriction in rodents has been shown to extend life span supporting an association between bioenergetics and senescence. In the present study, we use full length mtDNA amplification by long-extension polymerase chain reaction (LX-PCR) to demonstrate that mice accumulate a wide variety of mtDNA rearrangements with age in post mitotic tissues. Similarly, using an alternative PCR strategy, we have found that 2-4 kb minicircles containing the origin of heavy-strand replication accumulate with age in heart but not brain. Analysis of mtDNA structure and conformation by Southern blots of unrestricted DNA resolved by field inversion gel electrophoresis have revealed that the brain mtDNAs of young animals contain the traditional linear, nicked, and supercoiled mtDNAs while old animals accumulate substantial levels of a slower migrating species we designate age-specific mtDNAs. In old caloric restricted animals, a wide variety of rearranged mtDNAs can be detected by LX-PCR in post mitotic tissues, but Southern blots of unrestricted DNA reveals a marked reduction in the levels of the age- specific mtDNA species. These observations confirm that mtDNA mutations accumulate with age in mice and suggest that caloric restriction impedes this progress.

Full Text

The Full Text of this article is available as a PDF (274.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agarwal S., Sohal R. S. DNA oxidative damage and life expectancy in houseflies. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):12332–12335. doi: 10.1073/pnas.91.25.12332. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ames B. N., Shigenaga M. K. Oxidants are a major contributor to aging. Ann N Y Acad Sci. 1992 Nov 21;663:85–96. doi: 10.1111/j.1749-6632.1992.tb38652.x. [DOI] [PubMed] [Google Scholar]
  3. Ames B. N. Understanding the causes of aging and cancer. Microbiologia. 1995 Sep;11(3):305–308. [PubMed] [Google Scholar]
  4. Arnheim N., Cortopassi G. Deleterious mitochondrial DNA mutations accumulate in aging human tissues. Mutat Res. 1992 Sep;275(3-6):157–167. doi: 10.1016/0921-8734(92)90020-p. [DOI] [PubMed] [Google Scholar]
  5. Ballinger S. W., Shoffner J. M., Gebhart S., Koontz D. A., Wallace D. C. Mitochondrial diabetes revisited. Nat Genet. 1994 Aug;7(4):458–459. doi: 10.1038/ng0894-458. [DOI] [PubMed] [Google Scholar]
  6. Bandy B., Davison A. J. Mitochondrial mutations may increase oxidative stress: implications for carcinogenesis and aging? Free Radic Biol Med. 1990;8(6):523–539. doi: 10.1016/0891-5849(90)90152-9. [DOI] [PubMed] [Google Scholar]
  7. Baumer A., Zhang C., Linnane A. W., Nagley P. Age-related human mtDNA deletions: a heterogeneous set of deletions arising at a single pair of directly repeated sequences. Am J Hum Genet. 1994 Apr;54(4):618–630. [PMC free article] [PubMed] [Google Scholar]
  8. Bibb M. J., Van Etten R. A., Wright C. T., Walberg M. W., Clayton D. A. Sequence and gene organization of mouse mitochondrial DNA. Cell. 1981 Oct;26(2 Pt 2):167–180. doi: 10.1016/0092-8674(81)90300-7. [DOI] [PubMed] [Google Scholar]
  9. Bogenhagen D., Lowell C., Clayton D. A. Mechanism of mitochondrial DNA replication in mouse L-cells. Replication of unicircular dimer molecules. J Mol Biol. 1981 May 5;148(1):77–93. doi: 10.1016/0022-2836(81)90236-9. [DOI] [PubMed] [Google Scholar]
  10. Brossas J. Y., Barreau E., Courtois Y., Tréton J. Multiple deletions in mitochondrial DNA are present in senescent mouse brain. Biochem Biophys Res Commun. 1994 Jul 29;202(2):654–659. doi: 10.1006/bbrc.1994.1980. [DOI] [PubMed] [Google Scholar]
  11. Bulpitt K. J., Pikó L. Variation in the frequency of complex forms of mitochondrial DNA in different brain regions of senescent mice. Brain Res. 1984 May 21;300(1):41–48. doi: 10.1016/0006-8993(84)91339-8. [DOI] [PubMed] [Google Scholar]
  12. Calleja M., Peña P., Ugalde C., Ferreiro C., Marco R., Garesse R. Mitochondrial DNA remains intact during Drosophila aging, but the levels of mitochondrial transcripts are significantly reduced. J Biol Chem. 1993 Sep 5;268(25):18891–18897. [PubMed] [Google Scholar]
  13. Chance B., Sies H., Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol Rev. 1979 Jul;59(3):527–605. doi: 10.1152/physrev.1979.59.3.527. [DOI] [PubMed] [Google Scholar]
  14. Cheng S., Chen Y., Monforte J. A., Higuchi R., Van Houten B. Template integrity is essential for PCR amplification of 20- to 30-kb sequences from genomic DNA. PCR Methods Appl. 1995 Apr;4(5):294–298. doi: 10.1101/gr.4.5.294. [DOI] [PubMed] [Google Scholar]
  15. Chung S. S., Weindruch R., Schwarze S. R., McKenzie D. I., Aiken J. M. Multiple age-associated mitochondrial DNA deletions in skeletal muscle of mice. Aging (Milano) 1994 Jun;6(3):193–200. doi: 10.1007/BF03324239. [DOI] [PubMed] [Google Scholar]
  16. Clayton D. A., Smith C. A., Jordan J. M., Teplitz M., Vinograd J. Occurrence of complex mitochondrial DNA in normal tissues. Nature. 1968 Dec 7;220(5171):976–979. doi: 10.1038/220976a0. [DOI] [PubMed] [Google Scholar]
  17. Clayton D. A., Vinograd J. Circular dimer and catenate forms of mitochondrial DNA in human leukaemic leucocytes. Nature. 1967 Nov 18;216(5116):652–657. doi: 10.1038/216652a0. [DOI] [PubMed] [Google Scholar]
  18. Corral-Debrinski M., Horton T., Lott M. T., Shoffner J. M., Beal M. F., Wallace D. C. Mitochondrial DNA deletions in human brain: regional variability and increase with advanced age. Nat Genet. 1992 Dec;2(4):324–329. doi: 10.1038/ng1292-324. [DOI] [PubMed] [Google Scholar]
  19. Corral-Debrinski M., Shoffner J. M., Lott M. T., Wallace D. C. Association of mitochondrial DNA damage with aging and coronary atherosclerotic heart disease. Mutat Res. 1992 Sep;275(3-6):169–180. doi: 10.1016/0921-8734(92)90021-g. [DOI] [PubMed] [Google Scholar]
  20. Cortopassi G. A., Arnheim N. Detection of a specific mitochondrial DNA deletion in tissues of older humans. Nucleic Acids Res. 1990 Dec 11;18(23):6927–6933. doi: 10.1093/nar/18.23.6927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Cortopassi G. A., Shibata D., Soong N. W., Arnheim N. A pattern of accumulation of a somatic deletion of mitochondrial DNA in aging human tissues. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7370–7374. doi: 10.1073/pnas.89.16.7370. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hayakawa M., Sugiyama S., Hattori K., Takasawa M., Ozawa T. Age-associated damage in mitochondrial DNA in human hearts. Mol Cell Biochem. 1993 Feb 17;119(1-2):95–103. doi: 10.1007/BF00926859. [DOI] [PubMed] [Google Scholar]
  23. Higuchi Y., Linn S. Purification of all forms of HeLa cell mitochondrial DNA and assessment of damage to it caused by hydrogen peroxide treatment of mitochondria or cells. J Biol Chem. 1995 Apr 7;270(14):7950–7956. doi: 10.1074/jbc.270.14.7950. [DOI] [PubMed] [Google Scholar]
  24. Hudson B., Clayton D. A., Vinograd J. Complex mitochondrial DNA. Cold Spring Harb Symp Quant Biol. 1968;33:435–442. doi: 10.1101/sqb.1968.033.01.050. [DOI] [PubMed] [Google Scholar]
  25. Hudson B., Vinograd J. Catenated circular DNA molecules in HeLa cell mitochondria. Nature. 1967 Nov 18;216(5116):647–652. doi: 10.1038/216647a0. [DOI] [PubMed] [Google Scholar]
  26. Lee C. M., Chung S. S., Kaczkowski J. M., Weindruch R., Aiken J. M. Multiple mitochondrial DNA deletions associated with age in skeletal muscle of rhesus monkeys. J Gerontol. 1993 Nov;48(6):B201–B205. doi: 10.1093/geronj/48.6.b201. [DOI] [PubMed] [Google Scholar]
  27. Lee C. M., Eimon P., Weindruch R., Aiken J. M. Direct repeat sequences are not required at the breakpoints of age-associated mitochondrial DNA deletions in rhesus monkeys. Mech Ageing Dev. 1994 Jul;75(1):69–79. doi: 10.1016/0047-6374(94)90029-9. [DOI] [PubMed] [Google Scholar]
  28. Lee H. C., Pang C. Y., Hsu H. S., Wei Y. H. Ageing-associated tandem duplications in the D-loop of mitochondrial DNA of human muscle. FEBS Lett. 1994 Oct 31;354(1):79–83. doi: 10.1016/0014-5793(94)01063-3. [DOI] [PubMed] [Google Scholar]
  29. Mecocci P., MacGarvey U., Kaufman A. E., Koontz D., Shoffner J. M., Wallace D. C., Beal M. F. Oxidative damage to mitochondrial DNA shows marked age-dependent increases in human brain. Ann Neurol. 1993 Oct;34(4):609–616. doi: 10.1002/ana.410340416. [DOI] [PubMed] [Google Scholar]
  30. Melov S., Lithgow G. J., Fischer D. R., Tedesco P. M., Johnson T. E. Increased frequency of deletions in the mitochondrial genome with age of Caenorhabditis elegans. Nucleic Acids Res. 1995 Apr 25;23(8):1419–1425. doi: 10.1093/nar/23.8.1419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Melov S., Shoffner J. M., Kaufman A., Wallace D. C. Marked increase in the number and variety of mitochondrial DNA rearrangements in aging human skeletal muscle. Nucleic Acids Res. 1995 Oct 25;23(20):4122–4126. doi: 10.1093/nar/23.20.4122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Orr W. C., Sohal R. S. Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science. 1994 Feb 25;263(5150):1128–1130. doi: 10.1126/science.8108730. [DOI] [PubMed] [Google Scholar]
  33. Pikó L. Accumulation of mtDNA defects and changes in mtDNA content in mouse and rat tissues with aging. Ann N Y Acad Sci. 1992 Nov 21;663:450–452. doi: 10.1111/j.1749-6632.1992.tb38698.x. [DOI] [PubMed] [Google Scholar]
  34. Pikó L., Bulpitt K. J., Meyer R. Structural and replicative forms of mitochondrial DNA in tissues from adult and senescent BALB/c mice and Fischer 344 rats. Mech Ageing Dev. 1984 Jul;26(1):113–131. doi: 10.1016/0047-6374(84)90170-2. [DOI] [PubMed] [Google Scholar]
  35. Pikó L., Hougham A. J., Bulpitt K. J. Studies of sequence heterogeneity of mitochondrial DNA from rat and mouse tissues: evidence for an increased frequency of deletions/additions with aging. Mech Ageing Dev. 1988 Jun;43(3):279–293. doi: 10.1016/0047-6374(88)90037-1. [DOI] [PubMed] [Google Scholar]
  36. Pikó L., Meyer R., Eipe J., Costea N. Structural and replicative forms of mitochondrial DNA from human leukocytes in relation to age. Mech Ageing Dev. 1978 May;7(5):351–365. doi: 10.1016/0047-6374(78)90077-5. [DOI] [PubMed] [Google Scholar]
  37. Poulton J., Deadman M. E., Bindoff L., Morten K., Land J., Brown G. Families of mtDNA re-arrangements can be detected in patients with mtDNA deletions: duplications may be a transient intermediate form. Hum Mol Genet. 1993 Jan;2(1):23–30. doi: 10.1093/hmg/2.1.23. [DOI] [PubMed] [Google Scholar]
  38. Poulton J., Deadman M. E., Gardiner R. M. Tandem direct duplications of mitochondrial DNA in mitochondrial myopathy: analysis of nucleotide sequence and tissue distribution. Nucleic Acids Res. 1989 Dec 25;17(24):10223–10229. doi: 10.1093/nar/17.24.10223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Poulton J., Holt I. J. Mitochondrial DNA: does more lead to less? Nat Genet. 1994 Dec;8(4):313–315. doi: 10.1038/ng1294-313. [DOI] [PubMed] [Google Scholar]
  40. Poulton J., Morten K. J., Marchington D., Weber K., Brown G. K., Rötig A., Bindoff L. Duplications of mitochondrial DNA in Kearns-Sayre syndrome. Muscle Nerve Suppl. 1995;3:S154–S158. doi: 10.1002/mus.880181430. [DOI] [PubMed] [Google Scholar]
  41. Schwarze S. R., Lee C. M., Chung S. S., Roecker E. B., Weindruch R., Aiken J. M. High levels of mitochondrial DNA deletions in skeletal muscle of old rhesus monkeys. Mech Ageing Dev. 1995 Sep 7;83(2):91–101. doi: 10.1016/0047-6374(95)01611-3. [DOI] [PubMed] [Google Scholar]
  42. Sohal R. S., Agarwal S., Candas M., Forster M. J., Lal H. Effect of age and caloric restriction on DNA oxidative damage in different tissues of C57BL/6 mice. Mech Ageing Dev. 1994 Oct 20;76(2-3):215–224. doi: 10.1016/0047-6374(94)91595-4. [DOI] [PubMed] [Google Scholar]
  43. Sohal R. S., Ku H. H., Agarwal S., Forster M. J., Lal H. Oxidative damage, mitochondrial oxidant generation and antioxidant defenses during aging and in response to food restriction in the mouse. Mech Ageing Dev. 1994 May;74(1-2):121–133. doi: 10.1016/0047-6374(94)90104-x. [DOI] [PubMed] [Google Scholar]
  44. Sohal R. S., Orr W. C. Relationship between antioxidants, prooxidants, and the aging process. Ann N Y Acad Sci. 1992 Nov 21;663:74–84. doi: 10.1111/j.1749-6632.1992.tb38651.x. [DOI] [PubMed] [Google Scholar]
  45. Vanfleteren J. R., De Vreese A. The gerontogenes age-1 and daf-2 determine metabolic rate potential in aging Caenorhabditis elegans. FASEB J. 1995 Oct;9(13):1355–1361. doi: 10.1096/fasebj.9.13.7557026. [DOI] [PubMed] [Google Scholar]
  46. Vanfleteren J. R. Oxidative stress and ageing in Caenorhabditis elegans. Biochem J. 1993 Jun 1;292(Pt 2):605–608. doi: 10.1042/bj2920605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Weindruch R. Caloric restriction and aging. Sci Am. 1996 Jan;274(1):46–52. doi: 10.1038/scientificamerican0196-46. [DOI] [PubMed] [Google Scholar]
  48. Weindruch R., Walford R. L., Fligiel S., Guthrie D. The retardation of aging in mice by dietary restriction: longevity, cancer, immunity and lifetime energy intake. J Nutr. 1986 Apr;116(4):641–654. doi: 10.1093/jn/116.4.641. [DOI] [PubMed] [Google Scholar]
  49. White B. C., Tribhuwan R. C., Vander Laan D. J., DeGracia D. J., Krause G. S., Grossman L. I. Brain mitochondrial DNA is not damaged by prolonged cardiac arrest or reperfusion. J Neurochem. 1992 May;58(5):1716–1722. doi: 10.1111/j.1471-4159.1992.tb10045.x. [DOI] [PubMed] [Google Scholar]
  50. White F. A., Bunn C. L. Restriction enzyme analysis of mitochondrial DNA in aging human cells. Mech Ageing Dev. 1985 May 13;30(2):153–168. doi: 10.1016/0047-6374(85)90004-1. [DOI] [PubMed] [Google Scholar]
  51. Zhang C., Baumer A., Maxwell R. J., Linnane A. W., Nagley P. Multiple mitochondrial DNA deletions in an elderly human individual. FEBS Lett. 1992 Feb 3;297(1-2):34–38. doi: 10.1016/0014-5793(92)80321-7. [DOI] [PubMed] [Google Scholar]
  52. de la Asuncion J. G., Millan A., Pla R., Bruseghini L., Esteras A., Pallardo F. V., Sastre J., Viña J. Mitochondrial glutathione oxidation correlates with age-associated oxidative damage to mitochondrial DNA. FASEB J. 1996 Feb;10(2):333–338. doi: 10.1096/fasebj.10.2.8641567. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES