Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Mar 1;25(5):1064–1070. doi: 10.1093/nar/25.5.1064

A new method for straightening DNA molecules for optical restriction mapping.

H Yokota 1, F Johnson 1, H Lu 1, R M Robinson 1, A M Belu 1, M D Garrison 1, B D Ratner 1, B J Trask 1, D L Miller 1
PMCID: PMC146532  PMID: 9023119

Abstract

We have developed an improved method of straightening DNA molecules for use in optical restriction mapping. The DNA was straightened on 3-aminopropyltriethoxysilane-coated glass slides using surface tension generated by a moving meniscus. In our method the meniscus motion was controlled mechanically, which provides advantages of speed and uniformity of the straightened molecules. Variation in the affinity of the silanized surfaces for DNA was compensated by precoating the slide with single-stranded non-target blocking DNA. A small amount of MgCl2 added to the DNA suspension increased the DNA-surface affinity and was necessary for efficient restriction enzyme digestion of the straightened surface-bound DNA. By adjusting the amounts of blocking DNA and MgCl2, we prepared slides that contained many straight parallel DNA molecules. Straightened lambda phage DNA (48 kb) bound to a slide surface was digested by EcoRI restriction endonuclease, and the resulting restriction fragments were imaged by fluorescence microscopy using a CCD camera. The observed fragment lengths showed excellent agreement with their predicted lengths.

Full Text

The Full Text of this article is available as a PDF (146.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bensimon A., Simon A., Chiffaudel A., Croquette V., Heslot F., Bensimon D. Alignment and sensitive detection of DNA by a moving interface. Science. 1994 Sep 30;265(5181):2096–2098. doi: 10.1126/science.7522347. [DOI] [PubMed] [Google Scholar]
  2. Bensimon D, Simon AJ, Croquette V, V, Bensimon A. Stretching DNA with a receding meniscus: Experiments and models. Phys Rev Lett. 1995 Jun 5;74(23):4754–4757. doi: 10.1103/PhysRevLett.74.4754. [DOI] [PubMed] [Google Scholar]
  3. Cai W., Aburatani H., Stanton V. P., Jr, Housman D. E., Wang Y. K., Schwartz D. C. Ordered restriction endonuclease maps of yeast artificial chromosomes created by optical mapping on surfaces. Proc Natl Acad Sci U S A. 1995 May 23;92(11):5164–5168. doi: 10.1073/pnas.92.11.5164. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Heiskanen M., Karhu R., Hellsten E., Peltonen L., Kallioniemi O. P., Palotie A. High resolution mapping using fluorescence in situ hybridization to extended DNA fibers prepared from agarose-embedded cells. Biotechniques. 1994 Nov;17(5):928-9, 932-3. [PubMed] [Google Scholar]
  5. Meng X., Benson K., Chada K., Huff E. J., Schwartz D. C. Optical mapping of lambda bacteriophage clones using restriction endonucleases. Nat Genet. 1995 Apr;9(4):432–438. doi: 10.1038/ng0495-432. [DOI] [PubMed] [Google Scholar]
  6. Parra I., Windle B. High resolution visual mapping of stretched DNA by fluorescent hybridization. Nat Genet. 1993 Sep;5(1):17–21. doi: 10.1038/ng0993-17. [DOI] [PubMed] [Google Scholar]
  7. Perkins T. T., Quake S. R., Smith D. E., Chu S. Relaxation of a single DNA molecule observed by optical microscopy. Science. 1994 May 6;264(5160):822–826. doi: 10.1126/science.8171336. [DOI] [PubMed] [Google Scholar]
  8. Perkins T. T., Smith D. E., Chu S. Direct observation of tube-like motion of a single polymer chain. Science. 1994 May 6;264(5160):819–822. doi: 10.1126/science.8171335. [DOI] [PubMed] [Google Scholar]
  9. Rosenberg C., Florijn R. J., Van de Rijke F. M., Blonden L. A., Raap T. K., Van Ommen G. J., Den Dunnen J. T. High resolution DNA fiber-fish on yeast artificial chromosomes: direct visualization of DNA replication. Nat Genet. 1995 Aug;10(4):477–479. doi: 10.1038/ng0895-477. [DOI] [PubMed] [Google Scholar]
  10. Samad A., Huff E. F., Cai W., Schwartz D. C. Optical mapping: a novel, single-molecule approach to genomic analysis. Genome Res. 1995 Aug;5(1):1–4. doi: 10.1101/gr.5.1.1. [DOI] [PubMed] [Google Scholar]
  11. Schwartz D. C., Li X., Hernandez L. I., Ramnarain S. P., Huff E. J., Wang Y. K. Ordered restriction maps of Saccharomyces cerevisiae chromosomes constructed by optical mapping. Science. 1993 Oct 1;262(5130):110–114. doi: 10.1126/science.8211116. [DOI] [PubMed] [Google Scholar]
  12. Weier H. U., Wang M., Mullikin J. C., Zhu Y., Cheng J. F., Greulich K. M., Bensimon A., Gray J. W. Quantitative DNA fiber mapping. Hum Mol Genet. 1995 Oct;4(10):1903–1910. doi: 10.1093/hmg/4.10.1903. [DOI] [PubMed] [Google Scholar]
  13. Wiegant J., Kalle W., Mullenders L., Brookes S., Hoovers J. M., Dauwerse J. G., van Ommen G. J., Raap A. K. High-resolution in situ hybridization using DNA halo preparations. Hum Mol Genet. 1992 Nov;1(8):587–591. doi: 10.1093/hmg/1.8.587. [DOI] [PubMed] [Google Scholar]
  14. Zimmermann R. M., Cox E. C. DNA stretching on functionalized gold surfaces. Nucleic Acids Res. 1994 Feb 11;22(3):492–497. doi: 10.1093/nar/22.3.492. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES