Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Mar 1;25(5):1082–1084. doi: 10.1093/nar/25.5.1082

Transcriptional modulation of viral reporter gene constructs following induction of the cellular stress response.

J M Andrews 1, G C Newbound 1, M D Lairmore 1
PMCID: PMC146533  PMID: 9023123

Abstract

In this study, we report that commonly used methods of transient transfection induce the cellular stress response and a recovery period is required following transfection when analyzing cellular stress responsive genes. Four transfection methods were examined for their ability to induce the stress response by measuring the expression of heat shock protein (hsp) 72. We demonstrate that electroporation increases expression of hsp 72 in HUT 78 cells. Additionally, DEAE-dextran and liposome-mediated transfection resulted in increased hsp 72 expression in an adherent cell line (HeLa). Liposome-mediated transfection differentially induced cell stress, dependent on the transfection time in serum-free culture conditions. The stress responsiveness of two viral promoters, the HTLV-1 long terminal repeat and CMV immediate early transcriptional unit were examined. We found the maximal stress-mediated enhancement of transcription with both promoters did not occur until the cells recovered for 24 h following transfection.

Full Text

The Full Text of this article is available as a PDF (44.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrews J. M., Newbound G. C., Oglesbee M., Brady J. N., Lairmore M. D. The cellular stress response enhances human T-cell lymphotropic virus type 1 basal gene expression through the core promoter region of the long terminal repeat. J Virol. 1997 Jan;71(1):741–745. doi: 10.1128/jvi.71.1.741-745.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Andrews J. M., Oglesbee M. J., Trevino A. V., Guyot D. J., Newbound G. C., Lairmore M. D. Enhanced human T-cell lymphotropic virus type I expression following induction of the cellular stress response. Virology. 1995 Apr 20;208(2):816–820. doi: 10.1006/viro.1995.1218. [DOI] [PubMed] [Google Scholar]
  3. Barthel F., Remy J. S., Loeffler J. P., Behr J. P. Gene transfer optimization with lipospermine-coated DNA. DNA Cell Biol. 1993 Jul-Aug;12(6):553–560. doi: 10.1089/dna.1993.12.553. [DOI] [PubMed] [Google Scholar]
  4. Edington B. V., Whelan S. A., Hightower L. E. Inhibition of heat shock (stress) protein induction by deuterium oxide and glycerol: additional support for the abnormal protein hypothesis of induction. J Cell Physiol. 1989 May;139(2):219–228. doi: 10.1002/jcp.1041390202. [DOI] [PubMed] [Google Scholar]
  5. Gazdar A. F., Carney D. N., Bunn P. A., Russell E. K., Jaffe E. S., Schechter G. P., Guccion J. G. Mitogen requirements for the in vitro propagation of cutaneous T-cell lymphomas. Blood. 1980 Mar;55(3):409–417. [PubMed] [Google Scholar]
  6. Geelen J. L., Boom R., Klaver G. P., Minnaar R. P., Feltkamp M. C., van Milligen F. J., Sol C. J., van der Noordaa J. Transcriptional activation of the major immediate early transcription unit of human cytomegalovirus by heat-shock, arsenite and protein synthesis inhibitors. J Gen Virol. 1987 Nov;68(Pt 11):2925–2931. doi: 10.1099/0022-1317-68-11-2925. [DOI] [PubMed] [Google Scholar]
  7. Lee K. J., Hahn G. M. Abnormal proteins as the trigger for the induction of stress responses: heat, diamide, and sodium arsenite. J Cell Physiol. 1988 Sep;136(3):411–420. doi: 10.1002/jcp.1041360304. [DOI] [PubMed] [Google Scholar]
  8. Mizzen L. A., Welch W. J. Characterization of the thermotolerant cell. I. Effects on protein synthesis activity and the regulation of heat-shock protein 70 expression. J Cell Biol. 1988 Apr;106(4):1105–1116. doi: 10.1083/jcb.106.4.1105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Neumann E., Schaefer-Ridder M., Wang Y., Hofschneider P. H. Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J. 1982;1(7):841–845. doi: 10.1002/j.1460-2075.1982.tb01257.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Thomas G. P., Mathews M. B. Alterations of transcription and translation in HeLa cells exposed to amino acid analogs. Mol Cell Biol. 1984 Jun;4(6):1063–1072. doi: 10.1128/mcb.4.6.1063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Tjian R., Maniatis T. Transcriptional activation: a complex puzzle with few easy pieces. Cell. 1994 Apr 8;77(1):5–8. doi: 10.1016/0092-8674(94)90227-5. [DOI] [PubMed] [Google Scholar]
  12. Welch W. J., Kang H. S., Beckmann R. P., Mizzen L. A. Response of mammalian cells to metabolic stress; changes in cell physiology and structure/function of stress proteins. Curr Top Microbiol Immunol. 1991;167:31–55. doi: 10.1007/978-3-642-75875-1_2. [DOI] [PubMed] [Google Scholar]
  13. Wu B. J., Morimoto R. I. Transcription of the human hsp70 gene is induced by serum stimulation. Proc Natl Acad Sci U S A. 1985 Sep;82(18):6070–6074. doi: 10.1073/pnas.82.18.6070. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES