Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Mar 1;25(5):948–954. doi: 10.1093/nar/25.5.948

The structure of 3'-O-anthraniloyladenosine, an analogue of the 3'-end of aminoacyl-tRNA.

B Nawrot 1, W Milius 1, A Ejchart 1, S Limmer 1, M Sprinzl 1
PMCID: PMC146539  PMID: 9023103

Abstract

3'-O-Anthraniloyladenosine, an analogue of the 3'- terminal aminoacyladenosine residue in aminoacyl-tRNAs, was prepared by chemical synthesis, and its crystal structure was determined. The sugar pucker of 3'-O-anthraniloyladenosine is 2'-endo resulting in a 3'-axial position of the anthraniloyl residue. The nucleoside is insynconformation, which is stabilized by alternating stacking of adenine and benzoyl residues of the neighboring molecules in the crystal lattice. The conformation of the 5'-hydroxymethylene in 3'-O- anthraniloyladenosine is gauche-gauche. There are two intramolecular and two intermolecular hydrogen bonds and several H-bridges with surrounding water molecules. The predominant structure of 3'-O-anthraniloyladenosine in solution, as determined by NMR spectroscopy, is 2'-endo,gauche-gauche and anti for the sugar ring pucker, the torsion angle around the C4'-C5'bond and the torsion angle around the C1'-N9 bond, respectively. The 2'-endo conformation of the ribose in 2'(3')-O-aminoacyladenosine, which places the adenine and aminoacyl residues in equatorial and axial positions, respectively, could serve as a structural element that is recognized by enzymes that interact with aminoacyl-tRNA or by ribosomes to differentiate between aminoacylated and non-aminoacylated tRNA.

Full Text

The Full Text of this article is available as a PDF (116.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Hiratsuka T. New ribose-modified fluorescent analogs of adenine and guanine nucleotides available as substrates for various enzymes. Biochim Biophys Acta. 1983 Feb 15;742(3):496–508. doi: 10.1016/0167-4838(83)90267-4. [DOI] [PubMed] [Google Scholar]
  2. Janiak F., Dell V. A., Abrahamson J. K., Watson B. S., Miller D. L., Johnson A. E. Fluorescence characterization of the interaction of various transfer RNA species with elongation factor Tu.GTP: evidence for a new functional role for elongation factor Tu in protein biosynthesis. Biochemistry. 1990 May 8;29(18):4268–4277. doi: 10.1021/bi00470a002. [DOI] [PubMed] [Google Scholar]
  3. Krauss G., von der Haar F., Maass G. Conformation transitions of a tRNA--aminoacyl-tRNA synthetase complex induced by tRNAs bearing different modifications in the 3' terminus. Biochemistry. 1979 Oct 16;18(21):4755–4761. doi: 10.1021/bi00588a041. [DOI] [PubMed] [Google Scholar]
  4. Lefevre J. F., Bacha H., Renaud M., Ehrlich R., Gangloff J., Von der Haar F., Remy P. Fluorimetric study of yeast tRNAPheCCF in the complex with phenylalanyl-tRNA synthetase. Evidence for a correlation between the structural adaptation of both macromolecules and the appearance of the acylation activity. Eur J Biochem. 1981 Jul;117(3):439–447. [PubMed] [Google Scholar]
  5. Limmer S., Hofmann H. P., Ott G., Sprinzl M. The 3'-terminal end (NCCA) of tRNA determines the structure and stability of the aminoacyl acceptor stem. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):6199–6202. doi: 10.1073/pnas.90.13.6199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Limmer S., Reif B., Ott G., Arnold L., Sprinzl M. NMR evidence for helix geometry modifications by a G-U wobble base pair in the acceptor arm of E. coli tRNA(Ala). FEBS Lett. 1996 Apr 29;385(1-2):15–20. doi: 10.1016/0014-5793(96)00339-0. [DOI] [PubMed] [Google Scholar]
  7. Maelicke A., Sprinzl M., von der Haar F., Khwaja T. A., Cramer F. Structural studies on phenylalanine transfer ribonucleic acid from yeast with the spectroscopic label formycin. Eur J Biochem. 1974 Apr 16;43(3):617–625. doi: 10.1111/j.1432-1033.1974.tb03449.x. [DOI] [PubMed] [Google Scholar]
  8. Mazumdar S. K., Saenger W. Molecular structure of poly-2-thiouridylic acid, a double helix with non-equivalent polynucleotide chains. J Mol Biol. 1974 May 15;85(2):213–219. doi: 10.1016/0022-2836(74)90361-1. [DOI] [PubMed] [Google Scholar]
  9. Meinnel T., Mechulam Y., Lazennec C., Blanquet S., Fayat G. Critical role of the acceptor stem of tRNAs(Met) in their aminoacylation by Escherichia coli methionyl-tRNA synthetase. J Mol Biol. 1993 Jan 5;229(1):26–36. doi: 10.1006/jmbi.1993.1005. [DOI] [PubMed] [Google Scholar]
  10. Nissen P., Kjeldgaard M., Thirup S., Polekhina G., Reshetnikova L., Clark B. F., Nyborg J. Crystal structure of the ternary complex of Phe-tRNAPhe, EF-Tu, and a GTP analog. Science. 1995 Dec 1;270(5241):1464–1472. doi: 10.1126/science.270.5241.1464. [DOI] [PubMed] [Google Scholar]
  11. Pongs O., Wrede P., Erdmann V. A. Binding of complementary oligonucleotides to amino-acylated tRNAPhe from yeast. Biochem Biophys Res Commun. 1976 Aug 23;71(4):1025–1033. doi: 10.1016/0006-291x(76)90757-9. [DOI] [PubMed] [Google Scholar]
  12. Potts R. O., Ford N. C., Jr, Fournier M. J. Changes in the solution structure of yeast phenylalanine transfer ribonucleic acid associated with aminoacylation and magnesium binding. Biochemistry. 1981 Mar 17;20(6):1653–1659. doi: 10.1021/bi00509a038. [DOI] [PubMed] [Google Scholar]
  13. Puglisi E. V., Puglisi J. D., Williamson J. R., RajBhandary U. L. NMR analysis of tRNA acceptor stem microhelices: discriminator base change affects tRNA conformation at the 3' end. Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11467–11471. doi: 10.1073/pnas.91.24.11467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Rao S. T., Sundaralingam M. Stereochemistry of nucleic acids and their constituents. 13. The crystal and molecular structure of 3'-O-acetyladenosine. Conformational analysis of nucleosides and nucleotides with syn glycosidic torsional angle. J Am Chem Soc. 1970 Aug 12;92(16):4963–4970. doi: 10.1021/ja00719a033. [DOI] [PubMed] [Google Scholar]
  15. Scheit K. H., Saenger W. The conformation of 4-thiouridine-5'-phosphate in single and double stranded polynucleotides. FEBS Lett. 1969 Mar;2(5):305–308. doi: 10.1016/0014-5793(69)80049-9. [DOI] [PubMed] [Google Scholar]
  16. Schuber F., Pinck M. On the chemical reactivity of aminoacyl-tRNA ester bond. I. Influence of pH and nature of the acyl group on the rate of hydrolysis. Biochimie. 1974;56(3):383–390. doi: 10.1016/s0300-9084(74)80146-x. [DOI] [PubMed] [Google Scholar]
  17. Servillo L., Balestrieri C., Quagliuolo L., Iorio E. L., Giovane A. tRNA fluorescent labeling at 3' end inducing an aminoacyl-tRNA-like behavior. Eur J Biochem. 1993 Apr 1;213(1):583–589. doi: 10.1111/j.1432-1033.1993.tb17797.x. [DOI] [PubMed] [Google Scholar]
  18. Sprinzl M., Cramer F. Accepting site for aminoacylation of tRNAphe from yeast. Nat New Biol. 1973 Sep 5;245(140):3–5. doi: 10.1038/newbio245003a0. [DOI] [PubMed] [Google Scholar]
  19. Sprinzl M., Kucharzewski M., Hobbs J. B., Cramer F. Specificity of elongation factor Tu from Escherichia coli with respect to attachment to the amino acid to the 2' or 3'-hydroxyl group of the terminal adenosine of tRNA. Eur J Biochem. 1977 Aug 15;78(1):55–61. doi: 10.1111/j.1432-1033.1977.tb11713.x. [DOI] [PubMed] [Google Scholar]
  20. Sundaralingam M., Arora S. K. Crystal structure of the aminoglycosyl antibiotic puromycin dihydrochloride pentahydrate. Models for the terminal 3'-aminoacyladenosine moieties of transfer RNA's and protein-nucleic acid interactions. J Mol Biol. 1972 Oct 28;71(1):49–70. doi: 10.1016/0022-2836(72)90400-7. [DOI] [PubMed] [Google Scholar]
  21. Taiji M., Yokoyama S., Higuchi S., Miyazawa T. Rate of transacylation between 2' and 3'-O-L-phenylalanyladenosine. J Biochem. 1981 Sep;90(3):885–888. doi: 10.1093/oxfordjournals.jbchem.a133546. [DOI] [PubMed] [Google Scholar]
  22. Taiji M., Yokoyama S., Miyazawa T. Transacylation rates of (aminoacyl)adenosine moiety at the 3'-terminus of aminoacyl transfer ribonucleic acid. Biochemistry. 1983 Jun 21;22(13):3220–3225. doi: 10.1021/bi00282a028. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES