Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Mar 1;25(5):1002–1008. doi: 10.1093/nar/25.5.1002

The fission yeast UVDR DNA repair pathway is inducible.

S Davey 1, M L Nass 1, J V Ferrer 1, K Sidik 1, A Eisenberger 1, D L Mitchell 1, G A Freyer 1
PMCID: PMC146545  PMID: 9023111

Abstract

In addition to nucleotide excision repair (NER), the fission yeast Schizosaccharomyces pombe possesses a UV damage endonuclease (UVDE) for the excision of cyclobutane pyrimidine dimers and 6-4 pyrimidine pyrimidones. We have previously described UVDE as part of an alternative excision repair pathway, UVDR, for UV damage repair. The existence of two excision repair processes has long been postulated to exist in S.pombe, as NER-deficient mutants are still proficient in the excision of UV photoproducts. UVDE recognizes the phosphodiester bond immediately 5'of the UV photoproducts as the initiating event in this process. We show here that UVDE activity is inducible at both the level of uve1+ mRNA and UVDE enzyme activity. Further, we show that UVDE activity is regulated by the product of the rad12 gene.

Full Text

The Full Text of this article is available as a PDF (139.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Basile G., Aker M., Mortimer R. K. Nucleotide sequence and transcriptional regulation of the yeast recombinational repair gene RAD51. Mol Cell Biol. 1992 Jul;12(7):3235–3246. doi: 10.1128/mcb.12.7.3235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bowman K. K., Sidik K., Smith C. A., Taylor J. S., Doetsch P. W., Freyer G. A. A new ATP-independent DNA endonuclease from Schizosaccharomyces pombe that recognizes cyclobutane pyrimidine dimers and 6-4 photoproducts. Nucleic Acids Res. 1994 Aug 11;22(15):3026–3032. doi: 10.1093/nar/22.15.3026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cole G. M., Schild D., Lovett S. T., Mortimer R. K. Regulation of RAD54- and RAD52-lacZ gene fusions in Saccharomyces cerevisiae in response to DNA damage. Mol Cell Biol. 1987 Mar;7(3):1078–1084. doi: 10.1128/mcb.7.3.1078. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Devary Y., Gottlieb R. A., Lau L. F., Karin M. Rapid and preferential activation of the c-jun gene during the mammalian UV response. Mol Cell Biol. 1991 May;11(5):2804–2811. doi: 10.1128/mcb.11.5.2804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Elledge S. J., Zhou Z., Allen J. B. Ribonucleotide reductase: regulation, regulation, regulation. Trends Biochem Sci. 1992 Mar;17(3):119–123. doi: 10.1016/0968-0004(92)90249-9. [DOI] [PubMed] [Google Scholar]
  6. Freyer G. A., Davey S., Ferrer J. V., Martin A. M., Beach D., Doetsch P. W. An alternative eukaryotic DNA excision repair pathway. Mol Cell Biol. 1995 Aug;15(8):4572–4577. doi: 10.1128/mcb.15.8.4572. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Friedberg E. C. Deoxyribonucleic acid repair in the yeast Saccharomyces cerevisiae. Microbiol Rev. 1988 Mar;52(1):70–102. doi: 10.1128/mr.52.1.70-102.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Heelis P. F., Kim S. T., Okamura T., Sancar A. The photo repair of pyrimidine dimers by DNA photolyase and model systems. J Photochem Photobiol B. 1993 Mar;17(3):219–228. doi: 10.1016/1011-1344(93)80019-6. [DOI] [PubMed] [Google Scholar]
  9. Herrlich P., Sachsenmaier C., Radler-Pohl A., Gebel S., Blattner C., Rahmsdorf H. J. The mammalian UV response: mechanism of DNA damage induced gene expression. Adv Enzyme Regul. 1994;34:381–395. doi: 10.1016/0065-2571(94)90024-8. [DOI] [PubMed] [Google Scholar]
  10. Jaeg J. P., Bouayadi K., Calsou P., Salles B. UV induction of excision repair enzymes detected in protein extracts from Schizosaccharomyces pombe. Biochem Biophys Res Commun. 1994 Jan 28;198(2):770–779. doi: 10.1006/bbrc.1994.1111. [DOI] [PubMed] [Google Scholar]
  11. Jang Y. K., Jin Y. H., Shim Y. S., Kim M. J., Yoo E. J., Choi I. S., Lee J. S., Seong R. H., Hong S. H., Park S. D. Identification of the DNA damage-responsive elements of the rhp51+ gene, a recA and RAD51 homolog from the fission yeast Schizosaccharomyces pombe. Mol Gen Genet. 1996 May 23;251(2):167–175. doi: 10.1007/BF02172915. [DOI] [PubMed] [Google Scholar]
  12. Jeggo P. A., Taccioli G. E., Jackson S. P. Menage à trois: double strand break repair, V(D)J recombination and DNA-PK. Bioessays. 1995 Nov;17(11):949–957. doi: 10.1002/bies.950171108. [DOI] [PubMed] [Google Scholar]
  13. Jones J. S., Prakash L. Transcript levels of the Saccharomyces cerevisiae DNA repair gene RAD18 increase in UV irradiated cells and during meiosis but not during the mitotic cell cycle. Nucleic Acids Res. 1991 Feb 25;19(4):893–898. doi: 10.1093/nar/19.4.893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Keith C. T., Schreiber S. L. PIK-related kinases: DNA repair, recombination, and cell cycle checkpoints. Science. 1995 Oct 6;270(5233):50–51. doi: 10.1126/science.270.5233.50. [DOI] [PubMed] [Google Scholar]
  15. Lee J. K., Park E. J., Chung H. K., Hong S. H., Joe C. O., Park S. D. Isolation of UV-inducible transcripts from Schizosaccharomyces pombe. Biochem Biophys Res Commun. 1994 Jul 29;202(2):1113–1119. doi: 10.1006/bbrc.1994.2043. [DOI] [PubMed] [Google Scholar]
  16. Lehmann A. R., Walicka M., Griffiths D. J., Murray J. M., Watts F. Z., McCready S., Carr A. M. The rad18 gene of Schizosaccharomyces pombe defines a new subgroup of the SMC superfamily involved in DNA repair. Mol Cell Biol. 1995 Dec;15(12):7067–7080. doi: 10.1128/mcb.15.12.7067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. McCready S., Carr A. M., Lehmann A. R. Repair of cyclobutane pyrimidine dimers and 6-4 photoproducts in the fission yeast Schizosaccharomyces pombe. Mol Microbiol. 1993 Nov;10(4):885–890. doi: 10.1111/j.1365-2958.1993.tb00959.x. [DOI] [PubMed] [Google Scholar]
  18. Mitchell D. L., Clarkson J. M. The development of a radioimmunoassay for the detection of photoproducts in mammalian cell DNA. Biochim Biophys Acta. 1981 Aug 27;655(1):54–60. doi: 10.1016/0005-2787(81)90066-6. [DOI] [PubMed] [Google Scholar]
  19. Nurse P., Thuriaux P., Nasmyth K. Genetic control of the cell division cycle in the fission yeast Schizosaccharomyces pombe. Mol Gen Genet. 1976 Jul 23;146(2):167–178. doi: 10.1007/BF00268085. [DOI] [PubMed] [Google Scholar]
  20. Perozzi G., Prakash S. RAD7 gene of Saccharomyces cerevisiae: transcripts, nucleotide sequence analysis, and functional relationship between the RAD7 and RAD23 gene products. Mol Cell Biol. 1986 May;6(5):1497–1507. doi: 10.1128/mcb.6.5.1497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Robinson G. W., Nicolet C. M., Kalainov D., Friedberg E. C. A yeast excision-repair gene is inducible by DNA damaging agents. Proc Natl Acad Sci U S A. 1986 Mar;83(6):1842–1846. doi: 10.1073/pnas.83.6.1842. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Rosen K. M., Lamperti E. D., Villa-Komaroff L. Optimizing the northern blot procedure. Biotechniques. 1990 Apr;8(4):398–403. [PubMed] [Google Scholar]
  23. Rowley R., Subramani S., Young P. G. Checkpoint controls in Schizosaccharomyces pombe: rad1. EMBO J. 1992 Apr;11(4):1335–1342. doi: 10.1002/j.1460-2075.1992.tb05178.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sancar A., Sancar G. B. DNA repair enzymes. Annu Rev Biochem. 1988;57:29–67. doi: 10.1146/annurev.bi.57.070188.000333. [DOI] [PubMed] [Google Scholar]
  25. Sancar A., Tang M. S. Nucleotide excision repair. Photochem Photobiol. 1993 May;57(5):905–921. doi: 10.1111/j.1751-1097.1993.tb09233.x. [DOI] [PubMed] [Google Scholar]
  26. Sidik K., Lieberman H. B., Freyer G. A. Repair of DNA damaged by UV light and ionizing radiation by cell-free extracts prepared from Schizosaccharomyces pombe. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):12112–12116. doi: 10.1073/pnas.89.24.12112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Smith C. A., Taylor J. S. Preparation and characterization of a set of deoxyoligonucleotide 49-mers containing site-specific cis-syn, trans-syn-I, (6-4), and Dewar photoproducts of thymidylyl(3'-->5')-thymidine. J Biol Chem. 1993 May 25;268(15):11143–11151. [PubMed] [Google Scholar]
  28. Takao M., Yonemasu R., Yamamoto K., Yasui A. Characterization of a UV endonuclease gene from the fission yeast Schizosaccharomyces pombe and its bacterial homolog. Nucleic Acids Res. 1996 Apr 1;24(7):1267–1271. doi: 10.1093/nar/24.7.1267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Todo T., Ryo H., Yamamoto K., Toh H., Inui T., Ayaki H., Nomura T., Ikenaga M. Similarity among the Drosophila (6-4)photolyase, a human photolyase homolog, and the DNA photolyase-blue-light photoreceptor family. Science. 1996 Apr 5;272(5258):109–112. doi: 10.1126/science.272.5258.109. [DOI] [PubMed] [Google Scholar]
  30. Wolter R., Siede W., Brendel M. Regulation of SNM1, an inducible Saccharomyces cerevisiae gene required for repair of DNA cross-links. Mol Gen Genet. 1996 Feb 5;250(2):162–168. doi: 10.1007/BF02174175. [DOI] [PubMed] [Google Scholar]
  31. Yajima H., Takao M., Yasuhira S., Zhao J. H., Ishii C., Inoue H., Yasui A. A eukaryotic gene encoding an endonuclease that specifically repairs DNA damaged by ultraviolet light. EMBO J. 1995 May 15;14(10):2393–2399. doi: 10.1002/j.1460-2075.1995.tb07234.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. al-Khodairy F., Carr A. M. DNA repair mutants defining G2 checkpoint pathways in Schizosaccharomyces pombe. EMBO J. 1992 Apr;11(4):1343–1350. doi: 10.1002/j.1460-2075.1992.tb05179.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES