Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Mar 15;25(6):1248–1253. doi: 10.1093/nar/25.6.1248

Stabilization of yeast artificial chromosome clones in a rad54-3 recombination-deficient host strain.

Y Le 1, M J Dobson 1
PMCID: PMC146558  PMID: 9092636

Abstract

The cloning and propagation of large fragments of DNA on yeast artificial chromosomes (YACs) has become a routine and valuable technique in genome analysis. Unfortunately, many YAC clones have been found to undergo rearrangements or deletions during the cloning process. The frequency of transformation-associated alterations and mitotic instability can be reduced in a homologous recombination-deficient yeast host strain such as a rad52 mutant. RAD52 is one member of an epistatic group of genes required for the recombinational repair of double-strand breaks in DNA. rad52 mutants grow more slowly and transform less efficiently than RAD + strains and are therefore not ideal hosts for YAC library construction. We have investigated the ability of both null and temperature-sensitive alleles of RAD54 , another member of the RAD52 epistasis group, to prevent rearrangements of human YAC clones containing tandemly repeated DNA sequences. Our results show that the temperature-sensitive rad54-3 allele blocks mitotic recombination between tandemly repeated DYZ3 satellite sequences and significantly stabilizes a human DYZ5 satellite-containing YAC clone. Yeast carrying the rad54-3 mutation can undergo meiosis, have growth and transformation rates comparable with RAD + strains, and therefore represent improved YAC cloning hosts.

Full Text

The Full Text of this article is available as a PDF (162.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anand R., Villasante A., Tyler-Smith C. Construction of yeast artificial chromosome libraries with large inserts using fractionation by pulsed-field gel electrophoresis. Nucleic Acids Res. 1989 May 11;17(9):3425–3433. doi: 10.1093/nar/17.9.3425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bradshaw M. S., Bollekens J. A., Ruddle F. H. A new vector for recombination-based cloning of large DNA fragments from yeast artificial chromosomes. Nucleic Acids Res. 1995 Dec 11;23(23):4850–4856. doi: 10.1093/nar/23.23.4850. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Burke D. T., Carle G. F., Olson M. V. Cloning of large segments of exogenous DNA into yeast by means of artificial chromosome vectors. Science. 1987 May 15;236(4803):806–812. doi: 10.1126/science.3033825. [DOI] [PubMed] [Google Scholar]
  4. Cole G. M., Mortimer R. K. Failure to induce a DNA repair gene, RAD54, in Saccharomyces cerevisiae does not affect DNA repair or recombination phenotypes. Mol Cell Biol. 1989 Aug;9(8):3314–3322. doi: 10.1128/mcb.9.8.3314. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cox R. D., Meier-Ewert S., Ross M., Larin Z., Monaco A. P., Lehrach H. Genome mapping and cloning of mutations using yeast artificial chromosomes. Methods Enzymol. 1993;225:637–653. doi: 10.1016/0076-6879(93)25041-y. [DOI] [PubMed] [Google Scholar]
  6. Foote S., Vollrath D., Hilton A., Page D. C. The human Y chromosome: overlapping DNA clones spanning the euchromatic region. Science. 1992 Oct 2;258(5079):60–66. doi: 10.1126/science.1359640. [DOI] [PubMed] [Google Scholar]
  7. Game J. C., Mortimer R. K. A genetic study of x-ray sensitive mutants in yeast. Mutat Res. 1974 Sep;24(3):281–292. doi: 10.1016/0027-5107(74)90176-6. [DOI] [PubMed] [Google Scholar]
  8. Ho K. S., Mortimer R. K. Two mutations which confer temperature-sensitive radiation sensitivity in the yeast Saccharomyces cerevisiae. Mutat Res. 1975 Dec;33(2-3):157–164. doi: 10.1016/0027-5107(75)90190-6. [DOI] [PubMed] [Google Scholar]
  9. Ho K. S., Mortimer R. K. Two mutations which confer temperature-sensitive radiation sensitivity in the yeast Saccharomyces cerevisiae. Mutat Res. 1975 Dec;33(2-3):157–164. doi: 10.1016/0027-5107(75)90190-6. [DOI] [PubMed] [Google Scholar]
  10. Klein H. L. Different types of recombination events are controlled by the RAD1 and RAD52 genes of Saccharomyces cerevisiae. Genetics. 1988 Oct;120(2):367–377. doi: 10.1093/genetics/120.2.367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Larin Z., Monaco A. P., Meier-Ewert S., Lehrach H. Construction and characterization of yeast artificial chromosome libraries from the mouse genome. Methods Enzymol. 1993;225:623–637. doi: 10.1016/0076-6879(93)25040-9. [DOI] [PubMed] [Google Scholar]
  12. Larionov V., Kouprina N., Eldarov M., Perkins E., Porter G., Resnick M. A. Transformation-associated recombination between diverged and homologous DNA repeats is induced by strand breaks. Yeast. 1994 Jan;10(1):93–104. doi: 10.1002/yea.320100109. [DOI] [PubMed] [Google Scholar]
  13. Larionov V., Kouprina N., Nikolaishvili N., Resnick M. A. Recombination during transformation as a source of chimeric mammalian artificial chromosomes in yeast (YACs). Nucleic Acids Res. 1994 Oct 11;22(20):4154–4162. doi: 10.1093/nar/22.20.4154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ling L. L., Ma N. S., Smith D. R., Miller D. D., Moir D. T. Reduced occurrence of chimeric YACs in recombination-deficient hosts. Nucleic Acids Res. 1993 Dec 25;21(25):6045–6046. doi: 10.1093/nar/21.25.6045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Monaco A. P., Larin Z. YACs, BACs, PACs and MACs: artificial chromosomes as research tools. Trends Biotechnol. 1994 Jul;12(7):280–286. doi: 10.1016/0167-7799(94)90140-6. [DOI] [PubMed] [Google Scholar]
  16. Neil D. L., Villasante A., Fisher R. B., Vetrie D., Cox B., Tyler-Smith C. Structural instability of human tandemly repeated DNA sequences cloned in yeast artificial chromosome vectors. Nucleic Acids Res. 1990 Mar 25;18(6):1421–1428. doi: 10.1093/nar/18.6.1421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Schild D., Glassner B. J., Mortimer R. K., Carlson M., Laurent B. C. Identification of RAD16, a yeast excision repair gene homologous to the recombinational repair gene RAD54 and to the SNF2 gene involved in transcriptional activation. Yeast. 1992 May;8(5):385–395. doi: 10.1002/yea.320080506. [DOI] [PubMed] [Google Scholar]
  18. Schlessinger D. Yeast artificial chromosomes: tools for mapping and analysis of complex genomes. Trends Genet. 1990 Aug;6(8):248, 255-8. doi: 10.1016/0168-9525(90)90207-m. [DOI] [PubMed] [Google Scholar]
  19. Sears D. D., Hegemann J. H., Hieter P. Meiotic recombination and segregation of human-derived artificial chromosomes in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5296–5300. doi: 10.1073/pnas.89.12.5296. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Shinohara A., Ogawa H., Ogawa T. Rad51 protein involved in repair and recombination in S. cerevisiae is a RecA-like protein. Cell. 1992 May 1;69(3):457–470. doi: 10.1016/0092-8674(92)90447-k. [DOI] [PubMed] [Google Scholar]
  21. Sugawara N., Ivanov E. L., Fishman-Lobell J., Ray B. L., Wu X., Haber J. E. DNA structure-dependent requirements for yeast RAD genes in gene conversion. Nature. 1995 Jan 5;373(6509):84–86. doi: 10.1038/373084a0. [DOI] [PubMed] [Google Scholar]
  22. Thomas B. J., Rothstein R. The genetic control of direct-repeat recombination in Saccharomyces: the effect of rad52 and rad1 on mitotic recombination at GAL10, a transcriptionally regulated gene. Genetics. 1989 Dec;123(4):725–738. doi: 10.1093/genetics/123.4.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Tyler-Smith C., Brown W. R. Structure of the major block of alphoid satellite DNA on the human Y chromosome. J Mol Biol. 1987 Jun 5;195(3):457–470. doi: 10.1016/0022-2836(87)90175-6. [DOI] [PubMed] [Google Scholar]
  24. Tyler-Smith C., Taylor L., Müller U. Structure of a hypervariable tandemly repeated DNA sequence on the short arm of the human Y chromosome. J Mol Biol. 1988 Oct 20;203(4):837–848. doi: 10.1016/0022-2836(88)90110-6. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES