Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Mar 15;25(6):1211–1218. doi: 10.1093/nar/25.6.1211

Specificity and kinetics of interstrand and intrastrand bifunctional alkylation by nitrogen mustards at a G-G-C sequence.

G B Bauer 1, L F Povirk 1
PMCID: PMC146567  PMID: 9092631

Abstract

Previous work showed that melphalan-induced mutations in the aprt gene of CHO cells are primarily transversions and occur preferentially at G-G-C sequences, which are potential sites for various bifunctional alkylations involving guanine N-7. To identify the DNA lesion(s) which may be responsible for these mutations, an end-labeled DNA duplex containing a frequent site of melphalan-induced mutation in the aprt gene was treated with melphalan, mechlorethamine or phosphoramide mustard. The sequence specificity and kinetics of formation of both interstrand and intrastrand crosslinks were determined. All mustards selectively formed two base-staggered interstrand crosslinks between the 5'G and the G opposite C in the 5'G-G-C sequence. Secondary alkylation was much slower for melphalan than for the other mustards and the resulting crosslink was more stable. Mechlorethamine and phosphoramide mustard induced intrastrand crosslinks between the two contiguous Gs in the G-G-C sequence in double-stranded DNA, but melphalan did not. Molecular dynamic simulations provided a structural explanation for this difference, in that the monofunctionally bound intermediates of mechlorethamine and phosphoramide mustard assumed thermodynamically stable conformations with the second arm in a position appropriate for intrastrand crosslink formation, while the corresponding melphalan monoadduct did not.

Full Text

The Full Text of this article is available as a PDF (209.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Austin M. J., Han Y. H., Povirk L. F. DNA sequence analysis of mutations induced by melphalan in the CHO aprt locus. Cancer Genet Cytogenet. 1992 Nov;64(1):69–74. doi: 10.1016/0165-4608(92)90326-4. [DOI] [PubMed] [Google Scholar]
  2. Burnouf D., Duane M., Fuchs R. P. Spectrum of cisplatin-induced mutations in Escherichia coli. Proc Natl Acad Sci U S A. 1987 Jun;84(11):3758–3762. doi: 10.1073/pnas.84.11.3758. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dong Q., Barsky D., Colvin M. E., Melius C. F., Ludeman S. M., Moravek J. F., Colvin O. M., Bigner D. D., Modrich P., Friedman H. S. A structural basis for a phosphoramide mustard-induced DNA interstrand cross-link at 5'-d(GAC). Proc Natl Acad Sci U S A. 1995 Dec 19;92(26):12170–12174. doi: 10.1073/pnas.92.26.12170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Eastman A. Characterization of the adducts produced in DNA by cis-diamminedichloroplatinum(II) and cis-dichloro(ethylenediamine)platinum(II). Biochemistry. 1983 Aug 2;22(16):3927–3933. doi: 10.1021/bi00285a031. [DOI] [PubMed] [Google Scholar]
  5. Haworth I. S., Lee C. S., Yuki M., Gibson N. W. Molecular dynamics simulations provide a structural basis for the experimentally observed nucleotide preferences for DNA interstrand cross-links induced by aziridinylbenzoquinones. Biochemistry. 1993 Nov 30;32(47):12857–12863. doi: 10.1021/bi00210a039. [DOI] [PubMed] [Google Scholar]
  6. Hemminki K. Binding of metabolites of cyclophosphamide to DNA in a rat liver microsomal system and in vivo in mice. Cancer Res. 1985 Sep;45(9):4237–4243. [PubMed] [Google Scholar]
  7. Henne T., Schmähl D. Occurrence of second primary malignancies in man--a second look. Cancer Treat Rev. 1985 Jun;12(2):77–94. doi: 10.1016/0305-7372(85)90001-5. [DOI] [PubMed] [Google Scholar]
  8. Kallama S., Hemminki K. Stabilities of 7-alkylguanosines and 7-deoxyguanosines formed by phosphoramide mustard and nitrogen mustard. Chem Biol Interact. 1986 Jan;57(1):85–96. doi: 10.1016/0009-2797(86)90051-7. [DOI] [PubMed] [Google Scholar]
  9. Kunz B. A., Mis J. R. Mutational specificities of 1,3-bis(2-chloroethyl)-1-nitrosourea and nitrogen mustard in the SUP4-o gene of Saccharomyces cerevisiae. Cancer Res. 1989 Jan 15;49(2):279–283. [PubMed] [Google Scholar]
  10. Mattes W. B., Hartley J. A., Kohn K. W. DNA sequence selectivity of guanine-N7 alkylation by nitrogen mustards. Nucleic Acids Res. 1986 Apr 11;14(7):2971–2987. doi: 10.1093/nar/14.7.2971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Maxam A. M., Gilbert W. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 1980;65(1):499–560. doi: 10.1016/s0076-6879(80)65059-9. [DOI] [PubMed] [Google Scholar]
  12. Mazur M., Glickman B. W. Sequence specificity of mutations induced by benzo[a]pyrene-7,8-diol-9,10-epoxide at endogenous aprt gene in CHO cells. Somat Cell Mol Genet. 1988 Jul;14(4):393–400. doi: 10.1007/BF01534647. [DOI] [PubMed] [Google Scholar]
  13. Mehta J. R., Przybylski M., Ludlum D. B. Alkylation of guanosine and deoxyguanosine by phosphoramide mustard. Cancer Res. 1980 Nov;40(11):4183–4186. [PubMed] [Google Scholar]
  14. Müller N., Eisenbrand G. The influence of N7 substituents on the stability of N7-alkylated guanosines. Chem Biol Interact. 1985 Feb-Apr;53(1-2):173–181. doi: 10.1016/s0009-2797(85)80094-6. [DOI] [PubMed] [Google Scholar]
  15. Nowell P. C. Cytogenetics of preleukemia. Cancer Genet Cytogenet. 1982 Mar;5(3):265–278. doi: 10.1016/0165-4608(82)90034-6. [DOI] [PubMed] [Google Scholar]
  16. Ojwang J. O., Grueneberg D. A., Loechler E. L. Synthesis of a duplex oligonucleotide containing a nitrogen mustard interstrand DNA-DNA cross-link. Cancer Res. 1989 Dec 1;49(23):6529–6537. [PubMed] [Google Scholar]
  17. Osborne M. R., Wilman D. E., Lawley P. D. Alkylation of DNA by the nitrogen mustard bis(2-chloroethyl)methylamine. Chem Res Toxicol. 1995 Mar;8(2):316–320. doi: 10.1021/tx00044a018. [DOI] [PubMed] [Google Scholar]
  18. Pieper R. O., Futscher B. W., Erickson L. C. Transcription-terminating lesions induced by bifunctional alkylating agents in vitro. Carcinogenesis. 1989 Jul;10(7):1307–1314. doi: 10.1093/carcin/10.7.1307. [DOI] [PubMed] [Google Scholar]
  19. Povirk L. F., Shuker D. E. DNA damage and mutagenesis induced by nitrogen mustards. Mutat Res. 1994 Dec;318(3):205–226. doi: 10.1016/0165-1110(94)90015-9. [DOI] [PubMed] [Google Scholar]
  20. Ross W. E., Ewig R. A., Kohn K. W. Differences between melphalan and nitrogen mustard in the formation and removal of DNA cross-links. Cancer Res. 1978 Jun;38(6):1502–1506. [PubMed] [Google Scholar]
  21. Rowley J. D., Golomb H. M., Vardiman J. W. Nonrandom chromosome abnormalities in acute leukemia and dysmyelopoietic syndromes in patients with previously treated malignant disease. Blood. 1981 Oct;58(4):759–767. [PubMed] [Google Scholar]
  22. Singer B. The chemical effects of nucleic acid alkylation and their relation to mutagenesis and carcinogenesis. Prog Nucleic Acid Res Mol Biol. 1975;15(0):219–284. [PubMed] [Google Scholar]
  23. Sunters A., Springer C. J., Bagshawe K. D., Souhami R. L., Hartley J. A. The cytotoxicity, DNA crosslinking ability and DNA sequence selectivity of the aniline mustards melphalan, chlorambucil and 4-[bis(2-chloroethyl)amino] benzoic acid. Biochem Pharmacol. 1992 Jul 7;44(1):59–64. doi: 10.1016/0006-2952(92)90038-k. [DOI] [PubMed] [Google Scholar]
  24. Wang P., Bauer G. B., Bennett R. A., Povirk L. F. Thermolabile adenine adducts and A.T base pair substitutions induced by nitrogen mustard analogues in an SV40-based shuttle plasmid. Biochemistry. 1991 Dec 10;30(49):11515–11521. doi: 10.1021/bi00113a005. [DOI] [PubMed] [Google Scholar]
  25. Wang P., Bauer G. B., Kellogg G. E., Abraham D. J., Povirk L. F. Effect of distamycin on chlorambucil-induced mutagenesis in pZ189: evidence of a role for minor groove alkylation at adenine N-3. Mutagenesis. 1994 Mar;9(2):133–139. doi: 10.1093/mutage/9.2.133. [DOI] [PubMed] [Google Scholar]
  26. de Boer J. G., Glickman B. W. Sequence specificity of mutation induced by the anti-tumor drug cisplatin in the CHO aprt gene. Carcinogenesis. 1989 Aug;10(8):1363–1367. doi: 10.1093/carcin/10.8.1363. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES