Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Mar 15;25(6):1307–1308. doi: 10.1093/nar/25.6.1307

Optimization of DNA shuffling for high fidelity recombination.

H Zhao 1, F H Arnold 1
PMCID: PMC146579  PMID: 9092645

Abstract

A convenient 'DNA shuffling' protocol for random recombination of homologous genes in vitro with a very low rate of associated point mutagenesis (0.05%) is described. In addition, the mutagenesis rate can be controlled over a wide range by the inclusion of Mn2+or Mg2+during DNase I digestion, by choice of DNA polymerase used during gene reassembly as well as how the genes are prepared for shuffling (PCR amplification versus restriction enzyme digestion of plasmid DNA). These protocols should be useful for in vitro protein evolution, for DNA based computing and for structure-function studies of evolutionarily related genes.

Full Text

The Full Text of this article is available as a PDF (41.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chen K., Arnold F. H. Tuning the activity of an enzyme for unusual environments: sequential random mutagenesis of subtilisin E for catalysis in dimethylformamide. Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5618–5622. doi: 10.1073/pnas.90.12.5618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Crameri A., Whitehorn E. A., Tate E., Stemmer W. P. Improved green fluorescent protein by molecular evolution using DNA shuffling. Nat Biotechnol. 1996 Mar;14(3):315–319. doi: 10.1038/nbt0396-315. [DOI] [PubMed] [Google Scholar]
  3. Eckert K. A., Kunkel T. A. High fidelity DNA synthesis by the Thermus aquaticus DNA polymerase. Nucleic Acids Res. 1990 Jul 11;18(13):3739–3744. doi: 10.1093/nar/18.13.3739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Keohavong P., Thilly W. G. Fidelity of DNA polymerases in DNA amplification. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9253–9257. doi: 10.1073/pnas.86.23.9253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kunkel T. A., Loeb L. A., Goodman M. F. On the fidelity of DNA replication. The accuracy of T4 DNA polymerases in copying phi X174 DNA in vitro. J Biol Chem. 1984 Feb 10;259(3):1539–1545. [PubMed] [Google Scholar]
  6. Lorimer I. A., Pastan I. Random recombination of antibody single chain Fv sequences after fragmentation with DNaseI in the presence of Mn2+. Nucleic Acids Res. 1995 Aug 11;23(15):3067–3068. doi: 10.1093/nar/23.15.3067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Moore J. C., Arnold F. H. Directed evolution of a para-nitrobenzyl esterase for aqueous-organic solvents. Nat Biotechnol. 1996 Apr;14(4):458–467. doi: 10.1038/nbt0496-458. [DOI] [PubMed] [Google Scholar]
  8. Stemmer W. P. DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10747–10751. doi: 10.1073/pnas.91.22.10747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Stemmer W. P. Rapid evolution of a protein in vitro by DNA shuffling. Nature. 1994 Aug 4;370(6488):389–391. doi: 10.1038/370389a0. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES