Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Apr 1;25(7):1405–1412. doi: 10.1093/nar/25.7.1405

RNase YI* and RNA structure studies.

V J Cannistraro 1, D Kennell 1
PMCID: PMC146590  PMID: 9060436

Abstract

The enzymology of RNase YI*, a recently discovered endoribonuclease from yeast, was studied and compared to other endonucleases for detection of single-strand regions and base pair mismatches in RNA. Its value for RNA structure analyses was assessed with Escherichia coli 5S rRNA as a model substrate. The generally accepted structure of the 5S rRNA is based on thermodynamic energy considerations as well as structures conserved in regions of the molecule during evolution. S1 and mung bean nucleases gave similar results with very marked preference only for the longest single-stranded region in the model. RNase YI* was much more discriminating for detecting unpaired nucleotides as well as short single-strand regions and predicted the generally accepted 5S rRNA structure. Preliminary experiments also indicated that RNase YI* was more sensitive than RNase I for detecting single or multiple base pair mismatches in an RNA-DNA hybrid.

Full Text

The Full Text of this article is available as a PDF (143.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ando T. A nuclease specific for heat-denatured DNA in isolated from a product of Aspergillus oryzae. Biochim Biophys Acta. 1966 Jan 18;114(1):158–168. doi: 10.1016/0005-2787(66)90263-2. [DOI] [PubMed] [Google Scholar]
  2. Berk A. J., Sharp P. A. Sizing and mapping of early adenovirus mRNAs by gel electrophoresis of S1 endonuclease-digested hybrids. Cell. 1977 Nov;12(3):721–732. doi: 10.1016/0092-8674(77)90272-0. [DOI] [PubMed] [Google Scholar]
  3. Boguski M. S., Hieter P. A., Levy C. C. Identification of a cytidine-specific ribonuclease from chicken liver. J Biol Chem. 1980 Mar 10;255(5):2160–2163. [PubMed] [Google Scholar]
  4. Burgers P. M. DNA polymerase from Saccharomyces cerevisiae. Methods Enzymol. 1995;262:49–62. doi: 10.1016/0076-6879(95)62008-7. [DOI] [PubMed] [Google Scholar]
  5. Butorin A. S., Remy P., Ebel J. P., Vassilenko S. K. Comparison of the hydrolysis patterns of several tRNAs by cobra venom ribonuclease in different steps of the aminoacylation reaction. Eur J Biochem. 1982 Jan;121(3):587–595. doi: 10.1111/j.1432-1033.1982.tb05827.x. [DOI] [PubMed] [Google Scholar]
  6. Cannistraro V. J., Kennell D. RNase I*, a form of RNase I, and mRNA degradation in Escherichia coli. J Bacteriol. 1991 Aug;173(15):4653–4659. doi: 10.1128/jb.173.15.4653-4659.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cannistraro V. J., Kennell D. The 5' ends of RNA oligonucleotides in Escherichia coli and mRNA degradation. Eur J Biochem. 1993 Apr 1;213(1):285–293. doi: 10.1111/j.1432-1033.1993.tb17761.x. [DOI] [PubMed] [Google Scholar]
  8. Cannistraro V. J., Kennell D. The processive reaction mechanism of ribonuclease II. J Mol Biol. 1994 Nov 11;243(5):930–943. doi: 10.1006/jmbi.1994.1693. [DOI] [PubMed] [Google Scholar]
  9. Cannistraro V. J., Subbarao M. N., Kennell D. Specific endonucleolytic cleavage sites for decay of Escherichia coli mRNA. J Mol Biol. 1986 Nov 20;192(2):257–274. doi: 10.1016/0022-2836(86)90363-3. [DOI] [PubMed] [Google Scholar]
  10. Chamorro M., Parkin N., Varmus H. E. An RNA pseudoknot and an optimal heptameric shift site are required for highly efficient ribosomal frameshifting on a retroviral messenger RNA. Proc Natl Acad Sci U S A. 1992 Jan 15;89(2):713–717. doi: 10.1073/pnas.89.2.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Chen X., Chamorro M., Lee S. I., Shen L. X., Hines J. V., Tinoco I., Jr, Varmus H. E. Structural and functional studies of retroviral RNA pseudoknots involved in ribosomal frameshifting: nucleotides at the junction of the two stems are important for efficient ribosomal frameshifting. EMBO J. 1995 Feb 15;14(4):842–852. doi: 10.1002/j.1460-2075.1995.tb07062.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dam E., Pleij K., Draper D. Structural and functional aspects of RNA pseudoknots. Biochemistry. 1992 Dec 1;31(47):11665–11676. doi: 10.1021/bi00162a001. [DOI] [PubMed] [Google Scholar]
  13. Ehresmann C., Baudin F., Mougel M., Romby P., Ebel J. P., Ehresmann B. Probing the structure of RNAs in solution. Nucleic Acids Res. 1987 Nov 25;15(22):9109–9128. doi: 10.1093/nar/15.22.9109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Feng S., Holland E. C. HIV-1 tat trans-activation requires the loop sequence within tar. Nature. 1988 Jul 14;334(6178):165–167. doi: 10.1038/334165a0. [DOI] [PubMed] [Google Scholar]
  15. Fox G. E., Woese C. R. 5S RNA secondary structure. Nature. 1975 Aug 7;256(5517):505–507. doi: 10.1038/256505a0. [DOI] [PubMed] [Google Scholar]
  16. Heus H. A., Pardi A. Structural features that give rise to the unusual stability of RNA hairpins containing GNRA loops. Science. 1991 Jul 12;253(5016):191–194. doi: 10.1126/science.1712983. [DOI] [PubMed] [Google Scholar]
  17. Knapp G. Enzymatic approaches to probing of RNA secondary and tertiary structure. Methods Enzymol. 1989;180:192–212. doi: 10.1016/0076-6879(89)80102-8. [DOI] [PubMed] [Google Scholar]
  18. Levy C. C., Karpetsky T. P. The purification and properties of chicken liver RNase: An enzyme which is useful in distinguishing between cytidylic and uridylic acid residues. J Biol Chem. 1980 Mar 10;255(5):2153–2159. [PubMed] [Google Scholar]
  19. Lowman H. B., Draper D. E. On the recognition of helical RNA by cobra venom V1 nuclease. J Biol Chem. 1986 Apr 25;261(12):5396–5403. [PubMed] [Google Scholar]
  20. McLennan B. D., Lane B. G. The chain termini of polynucleotides formed by limited enzymic fragmentation of wheat embryo ribosomal RNA. 2. Studies of a snake venom ribonuclease and pancreas ribonuclease. Can J Biochem. 1968 Jan;46(1):93–107. doi: 10.1139/o68-014. [DOI] [PubMed] [Google Scholar]
  21. Meador J., 3rd, Cannon B., Cannistraro V. J., Kennell D. Purification and characterization of Escherichia coli RNase I. Comparisons with RNase M. Eur J Biochem. 1990 Feb 14;187(3):549–553. doi: 10.1111/j.1432-1033.1990.tb15336.x. [DOI] [PubMed] [Google Scholar]
  22. Meador J., 3rd, Kennell D. Cloning and sequencing the gene encoding Escherichia coli ribonuclease I: exact physical mapping using the genome library. Gene. 1990 Oct 30;95(1):1–7. doi: 10.1016/0378-1119(90)90406-h. [DOI] [PubMed] [Google Scholar]
  23. Noller H. F. Structure of ribosomal RNA. Annu Rev Biochem. 1984;53:119–162. doi: 10.1146/annurev.bi.53.070184.001003. [DOI] [PubMed] [Google Scholar]
  24. Shen L. X., Cai Z., Tinoco I., Jr RNA structure at high resolution. FASEB J. 1995 Aug;9(11):1023–1033. doi: 10.1096/fasebj.9.11.7544309. [DOI] [PubMed] [Google Scholar]
  25. Shen L. X., Tinoco I., Jr The structure of an RNA pseudoknot that causes efficient frameshifting in mouse mammary tumor virus. J Mol Biol. 1995 Apr 14;247(5):963–978. doi: 10.1006/jmbi.1995.0193. [DOI] [PubMed] [Google Scholar]
  26. Simons R. W., Kleckner N. Biological regulation by antisense RNA in prokaryotes. Annu Rev Genet. 1988;22:567–600. doi: 10.1146/annurev.ge.22.120188.003031. [DOI] [PubMed] [Google Scholar]
  27. Srivastava S. K., Cannistraro V. J., Kennell D. Broad-specificity endoribonucleases and mRNA degradation in Escherichia coli. J Bacteriol. 1992 Jan;174(1):56–62. doi: 10.1128/jb.174.1.56-62.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Uchida T., Arima T., Egami F. Specificity of RNase U2. J Biochem. 1970 Jan;67(1):91–102. doi: 10.1093/oxfordjournals.jbchem.a129239. [DOI] [PubMed] [Google Scholar]
  29. Varani G., Cheong C., Tinoco I., Jr Structure of an unusually stable RNA hairpin. Biochemistry. 1991 Apr 2;30(13):3280–3289. doi: 10.1021/bi00227a016. [DOI] [PubMed] [Google Scholar]
  30. Vasilenko S. K., Ryte V. C. [Isolation of highly purified ribonuclease from cobra (Naja oxiana) venom]. Biokhimiia. 1975 May-Jun;40(3):578–583. [PubMed] [Google Scholar]
  31. WITZEL H., BARNARD E. A. Mechanism and binding sites in the ribonuclease reaction. II. Kinetic studies on the first step of the reaction. Biochem Biophys Res Commun. 1962 May 4;7:295–299. doi: 10.1016/0006-291x(62)90194-8. [DOI] [PubMed] [Google Scholar]
  32. White S. A., Nilges M., Huang A., Brünger A. T., Moore P. B. NMR analysis of helix I from the 5S RNA of Escherichia coli. Biochemistry. 1992 Feb 18;31(6):1610–1621. doi: 10.1021/bi00121a005. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES