Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Apr 1;25(7):1333–1338. doi: 10.1093/nar/25.7.1333

Developmental activation of an episomic hsp70 gene promoter in two-cell mouse embryos by transcription factor Sp1.

A Bevilacqua 1, M T Fiorenza 1, F Mangia 1
PMCID: PMC146604  PMID: 9060426

Abstract

To investigate the control of zygotic genome expression in two-cell mouse embryos, we studied transcription factors required for transient expression of microinjected DNA constructs driven by the promoter of one of the earliest genes activated after fertilization in this system, the heat shock gene hsp70. Cis-acting elements required for hsp70 activation were first investigated by mutational analysis. Mutation of the TATA box and a proximal GC box strongly inhibited construct expression, while that of a CCAAT box had no effect. Transcription factors binding the wild-type hsp70 promoter were then titrated in vivo by coinjecting the construct with double-stranded oligodeoxyribonucleotides containing definite consensus sequences. Wild-type GC box oligonucleotides strongly inhibited construct expression, while those containing mutated GC boxes, wild-type CCAAT boxes, and heat shock elements had no effects. Finally, construct expression was challenged by coinjecting antibodies to specific transcription factors. Antibodies to factor Sp1 depressed construct expression in a dose-dependent manner, while those to Sp2, HSF1 and HSF2 were ineffective. These results pinpoint the Sp1 transcription factor as an absolute requirement for activation of the hsp70 gene promoter in two-cell mouse embryos, and make this factor a candidate for a major regulator of the onset of murine zygotic genome expression.

Full Text

The Full Text of this article is available as a PDF (113.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bensaude O., Babinet C., Morange M., Jacob F. Heat shock proteins, first major products of zygotic gene activity in mouse embryo. Nature. 1983 Sep 22;305(5932):331–333. doi: 10.1038/305331a0. [DOI] [PubMed] [Google Scholar]
  2. Bevilacqua A., Kinnunen L. H., Bevilacqua S., Mangia F. Stage-specific regulation of murine Hsp68 gene promoter in preimplantation mouse embryos. Dev Biol. 1995 Aug;170(2):467–478. doi: 10.1006/dbio.1995.1230. [DOI] [PubMed] [Google Scholar]
  3. Bevilacqua A., Mangia F. Activity of a microinjected inducible murine hsp68 gene promoter depends on plasmid configuration and the presence of heat shock elements in mouse dictyate oocytes but not in two-cell embryos. Dev Genet. 1993;14(2):92–102. doi: 10.1002/dvg.1020140203. [DOI] [PubMed] [Google Scholar]
  4. Bonnerot C., Vernet M., Grimber G., Briand P., Nicolas J. F. Transcriptional selectivity in early mouse embryos: a qualitative study. Nucleic Acids Res. 1991 Dec;19(25):7251–7257. doi: 10.1093/nar/19.25.7251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Christians E., Campion E., Thompson E. M., Renard J. P. Expression of the HSP 70.1 gene, a landmark of early zygotic activity in the mouse embryo, is restricted to the first burst of transcription. Development. 1995 Jan;121(1):113–122. doi: 10.1242/dev.121.1.113. [DOI] [PubMed] [Google Scholar]
  6. Conover J. C., Temeles G. L., Zimmermann J. W., Burke B., Schultz R. M. Stage-specific expression of a family of proteins that are major products of zygotic gene activation in the mouse embryo. Dev Biol. 1991 Apr;144(2):392–404. doi: 10.1016/0012-1606(91)90431-2. [DOI] [PubMed] [Google Scholar]
  7. Dooley T. P., Miranda M., Jones N. C., DePamphilis M. L. Transactivation of the adenovirus EIIa promoter in the absence of adenovirus E1A protein is restricted to mouse oocytes and preimplantation embryos. Development. 1989 Dec;107(4):945–956. doi: 10.1242/dev.107.4.945. [DOI] [PubMed] [Google Scholar]
  8. Fiorenza M. T., Farkas T., Dissing M., Kolding D., Zimarino V. Complex expression of murine heat shock transcription factors. Nucleic Acids Res. 1995 Feb 11;23(3):467–474. doi: 10.1093/nar/23.3.467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Greene J. M., Larin Z., Taylor I. C., Prentice H., Gwinn K. A., Kingston R. E. Multiple basal elements of a human hsp70 promoter function differently in human and rodent cell lines. Mol Cell Biol. 1987 Oct;7(10):3646–3655. doi: 10.1128/mcb.7.10.3646. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hahnel A. C., Gifford D. J., Heikkila J. J., Schultz G. A. Expression of the major heat shock protein (hsp 70) family during early mouse embryo development. Teratog Carcinog Mutagen. 1986;6(6):493–510. doi: 10.1002/tcm.1770060603. [DOI] [PubMed] [Google Scholar]
  11. Henery C. C., Miranda M., Wiekowski M., Wilmut I., DePamphilis M. L. Repression of gene expression at the beginning of mouse development. Dev Biol. 1995 Jun;169(2):448–460. doi: 10.1006/dbio.1995.1160. [DOI] [PubMed] [Google Scholar]
  12. Howlett S. K., Bolton V. N. Sequence and regulation of morphological and molecular events during the first cell cycle of mouse embryogenesis. J Embryol Exp Morphol. 1985 Jun;87:175–206. [PubMed] [Google Scholar]
  13. Hunt C., Calderwood S. Characterization and sequence of a mouse hsp70 gene and its expression in mouse cell lines. Gene. 1990 Mar 15;87(2):199–204. doi: 10.1016/0378-1119(90)90302-8. [DOI] [PubMed] [Google Scholar]
  14. Kothary R., Clapoff S., Darling S., Perry M. D., Moran L. A., Rossant J. Inducible expression of an hsp68-lacZ hybrid gene in transgenic mice. Development. 1989 Apr;105(4):707–714. doi: 10.1242/dev.105.4.707. [DOI] [PubMed] [Google Scholar]
  15. Latham K. E., Garrels J. I., Chang C., Solter D. Quantitative analysis of protein synthesis in mouse embryos. I. Extensive reprogramming at the one- and two-cell stages. Development. 1991 Aug;112(4):921–932. doi: 10.1242/dev.112.4.921. [DOI] [PubMed] [Google Scholar]
  16. Latham K. E., Solter D., Schultz R. M. Acquisition of a transcriptionally permissive state during the 1-cell stage of mouse embryogenesis. Dev Biol. 1992 Feb;149(2):457–462. doi: 10.1016/0012-1606(92)90300-6. [DOI] [PubMed] [Google Scholar]
  17. Lee S., Gilula N. B., Warner A. E. Gap junctional communication and compaction during preimplantation stages of mouse development. Cell. 1987 Dec 4;51(5):851–860. doi: 10.1016/0092-8674(87)90108-5. [DOI] [PubMed] [Google Scholar]
  18. Livant D. L., Hough-Evans B. R., Moore J. G., Britten R. J., Davidson E. H. Differential stability of expression of similarly specified endogenous and exogenous genes in the sea urchin embryo. Development. 1991 Oct;113(2):385–398. doi: 10.1242/dev.113.2.385. [DOI] [PubMed] [Google Scholar]
  19. Lowe D. G., Moran L. A. Molecular cloning and analysis of DNA complementary to three mouse Mr = 68,000 heat shock protein mRNAs. J Biol Chem. 1986 Feb 15;261(5):2102–2112. [PubMed] [Google Scholar]
  20. Majumder S., DePamphilis M. L. Requirements for DNA transcription and replication at the beginning of mouse development. J Cell Biochem. 1994 May;55(1):59–68. doi: 10.1002/jcb.240550107. [DOI] [PubMed] [Google Scholar]
  21. Majumder S., Miranda M., DePamphilis M. L. Analysis of gene expression in mouse preimplantation embryos demonstrates that the primary role of enhancers is to relieve repression of promoters. EMBO J. 1993 Mar;12(3):1131–1140. doi: 10.1002/j.1460-2075.1993.tb05754.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Martínez-Salas E., Linney E., Hassell J., DePamphilis M. L. The need for enhancers in gene expression first appears during mouse development with formation of the zygotic nucleus. Genes Dev. 1989 Oct;3(10):1493–1506. doi: 10.1101/gad.3.10.1493. [DOI] [PubMed] [Google Scholar]
  23. Mélin F., Miranda M., Montreau N., DePamphilis M. L., Blangy D. Transcription enhancer factor-1 (TEF-1) DNA binding sites can specifically enhance gene expression at the beginning of mouse development. EMBO J. 1993 Dec;12(12):4657–4666. doi: 10.1002/j.1460-2075.1993.tb06154.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Perry M. D., Moran L. A. Isolation of a mouse heat-shock gene (hsp68) by recombinational screening. Gene. 1987;51(2-3):227–236. doi: 10.1016/0378-1119(87)90311-8. [DOI] [PubMed] [Google Scholar]
  25. Pugh B. F., Tjian R. Mechanism of transcriptional activation by Sp1: evidence for coactivators. Cell. 1990 Jun 29;61(7):1187–1197. doi: 10.1016/0092-8674(90)90683-6. [DOI] [PubMed] [Google Scholar]
  26. Pugh B. F., Tjian R. Transcription from a TATA-less promoter requires a multisubunit TFIID complex. Genes Dev. 1991 Nov;5(11):1935–1945. doi: 10.1101/gad.5.11.1935. [DOI] [PubMed] [Google Scholar]
  27. Ram P. T., Schultz R. M. Reporter gene expression in G2 of the 1-cell mouse embryo. Dev Biol. 1993 Apr;156(2):552–556. doi: 10.1006/dbio.1993.1101. [DOI] [PubMed] [Google Scholar]
  28. Schwartz D. A., Schultz R. M. Zygotic gene activation in the mouse embryo: involvement of cyclic adenosine monophosphate-dependent protein kinase and appearance of an AP-1-like activity. Mol Reprod Dev. 1992 Jul;32(3):209–216. doi: 10.1002/mrd.1080320305. [DOI] [PubMed] [Google Scholar]
  29. Stevens M. E., Meneses J. J., Pedersen R. A. Expression of a mouse metallothionein-Escherichia coli beta-galactosidase fusion gene (MT-beta gal) in early mouse embryos. Exp Cell Res. 1989 Aug;183(2):319–325. doi: 10.1016/0014-4827(89)90392-3. [DOI] [PubMed] [Google Scholar]
  30. Wiekowski M., Miranda M., DePamphilis M. L. Regulation of gene expression in preimplantation mouse embryos: effects of the zygotic clock and the first mitosis on promoter and enhancer activities. Dev Biol. 1991 Oct;147(2):403–414. doi: 10.1016/0012-1606(91)90298-h. [DOI] [PubMed] [Google Scholar]
  31. Wiekowski M., Miranda M., DePamphilis M. L. Requirements for promoter activity in mouse oocytes and embryos distinguish paternal pronuclei from maternal and zygotic nuclei. Dev Biol. 1993 Sep;159(1):366–378. doi: 10.1006/dbio.1993.1248. [DOI] [PubMed] [Google Scholar]
  32. Williams G. T., Morimoto R. I. Maximal stress-induced transcription from the human HSP70 promoter requires interactions with the basal promoter elements independent of rotational alignment. Mol Cell Biol. 1990 Jun;10(6):3125–3136. doi: 10.1128/mcb.10.6.3125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Worrad D. M., Ram P. T., Schultz R. M. Regulation of gene expression in the mouse oocyte and early preimplantation embryo: developmental changes in Sp1 and TATA box-binding protein, TBP. Development. 1994 Aug;120(8):2347–2357. doi: 10.1242/dev.120.8.2347. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES