Abstract
An RNA oligonucleotide that contains the binding site for Escherichia coli ribosomal protein S8 was prepared with uniform 15N isotopic enrichment and uniform deuterium enrichment at all non-exchangeable sites using enzymatic methods. The RNA binding site, which contains 44 nt, forms a hairpin in solution and requires Mg2+for proper folding. The longitudinal magnetization recovery rates of the exchangeable protons were compared for the [2H,15N]-enriched RNA molecule and for the corresponding fully [2H,15N]-enriched RNA hairpin. It was found that 1H-1H dipolar relaxation significantly contributes to the recovery of exchangeable proton longitudinal magnetization. The exchangeable proton resonance line widths were less affected by deuteration, indicating that chemical exchange with H2O remains the dominant mechanism of transverse magnetization relaxation. Nevertheless, deuteration of this RNA hairpin was found to enhance the sensitivity of NOE-based experiments relative to the fully protonated hairpin and to simplify 2D NMR spectra. The increased signal-to-noise ratio facilitated the assignment of the cytidine amino resonances and several of the purine nucleotide amino resonances and permitted the identification of NOE crosspeaks that could not be observed in spectra of the fully protonated RNA hairpin.
Full Text
The Full Text of this article is available as a PDF (133.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Agback P., Maltseva T. V., Yamakage S. I., Nilson F. P., Földesi A., Chattopadhyaya J. The differences in the T2 relaxation rates of the protons in the partially-deuteriated and fully protonated sugar residues in a large oligo-DNA ('NMR-window') gives complementary structural information. Nucleic Acids Res. 1994 Apr 25;22(8):1404–1412. doi: 10.1093/nar/22.8.1404. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Anderson D., Raffioni S., Luporini P., Bradshaw R. A., Eisenberg D. Crystallization of the Euplotes raikovi mating pheromone Er-1. J Mol Biol. 1990 Nov 5;216(1):1–2. doi: 10.1016/S0022-2836(05)80055-5. [DOI] [PubMed] [Google Scholar]
- Arrowsmith C. H., Pachter R., Altman R. B., Iyer S. B., Jardetzky O. Sequence-specific 1H NMR assignments and secondary structure in solution of Escherichia coli trp repressor. Biochemistry. 1990 Jul 10;29(27):6332–6341. doi: 10.1021/bi00479a002. [DOI] [PubMed] [Google Scholar]
- Batey R. T., Inada M., Kujawinski E., Puglisi J. D., Williamson J. R. Preparation of isotopically labeled ribonucleotides for multidimensional NMR spectroscopy of RNA. Nucleic Acids Res. 1992 Sep 11;20(17):4515–4523. doi: 10.1093/nar/20.17.4515. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davanloo P., Rosenberg A. H., Dunn J. J., Studier F. W. Cloning and expression of the gene for bacteriophage T7 RNA polymerase. Proc Natl Acad Sci U S A. 1984 Apr;81(7):2035–2039. doi: 10.1073/pnas.81.7.2035. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dieckmann T., Suzuki E., Nakamura G. K., Feigon J. Solution structure of an ATP-binding RNA aptamer reveals a novel fold. RNA. 1996 Jul;2(7):628–640. [PMC free article] [PubMed] [Google Scholar]
- Fan P., Suri A. K., Fiala R., Live D., Patel D. J. Molecular recognition in the FMN-RNA aptamer complex. J Mol Biol. 1996 May 10;258(3):480–500. doi: 10.1006/jmbi.1996.0263. [DOI] [PubMed] [Google Scholar]
- Glemarec C., Kufel J., Földesi A., Maltseva T., Sandström A., Kirsebom L. A., Chattopadhyaya J. The NMR structure of 31mer RNA domain of Escherichia coli RNase P RNA using its non-uniformly deuterium labelled counterpart [the 'NMR-window' concept]. Nucleic Acids Res. 1996 Jun 1;24(11):2022–2035. doi: 10.1093/nar/24.11.2022. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gregory R. J., Cahill P. B., Thurlow D. L., Zimmermann R. A. Interaction of Escherichia coli ribosomal protein S8 with its binding sites in ribosomal RNA and messenger RNA. J Mol Biol. 1988 Nov 20;204(2):295–307. doi: 10.1016/0022-2836(88)90577-3. [DOI] [PubMed] [Google Scholar]
- Gutell R. R. Collection of small subunit (16S- and 16S-like) ribosomal RNA structures. Nucleic Acids Res. 1993 Jul 1;21(13):3051–3054. doi: 10.1093/nar/21.13.3051. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heus H. A., Pardi A. Nuclear magnetic resonance studies of the hammerhead ribozyme domain. Secondary structure formation and magnesium ion dependence. J Mol Biol. 1991 Jan 5;217(1):113–124. doi: 10.1016/0022-2836(91)90615-d. [DOI] [PubMed] [Google Scholar]
- Hoffman D. W., Holland J. A. Preparation of carbon-13 labeled ribonucleotides using acetate as an isotope source. Nucleic Acids Res. 1995 Aug 25;23(16):3361–3362. doi: 10.1093/nar/23.16.3361-b. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holland J. A., Hoffman D. W. Structural features and stability of an RNA triple helix in solution. Nucleic Acids Res. 1996 Jul 15;24(14):2841–2848. doi: 10.1093/nar/24.14.2841. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LeMaster D. M., Richards F. M. NMR sequential assignment of Escherichia coli thioredoxin utilizing random fractional deuteriation. Biochemistry. 1988 Jan 12;27(1):142–150. doi: 10.1021/bi00401a022. [DOI] [PubMed] [Google Scholar]
- Markus M. A., Dayie K. T., Matsudaira P., Wagner G. Effect of deuteration on the amide proton relaxation rates in proteins. Heteronuclear NMR experiments on villin 14T. J Magn Reson B. 1994 Oct;105(2):192–195. doi: 10.1006/jmrb.1994.1122. [DOI] [PubMed] [Google Scholar]
- Mougel M., Allmang C., Eyermann F., Cachia C., Ehresmann B., Ehresmann C. Minimal 16S rRNA binding site and role of conserved nucleotides in Escherichia coli ribosomal protein S8 recognition. Eur J Biochem. 1993 Aug 1;215(3):787–792. doi: 10.1111/j.1432-1033.1993.tb18093.x. [DOI] [PubMed] [Google Scholar]
- Nikonowicz E. P., Sirr A., Legault P., Jucker F. M., Baer L. M., Pardi A. Preparation of 13C and 15N labelled RNAs for heteronuclear multi-dimensional NMR studies. Nucleic Acids Res. 1992 Sep 11;20(17):4507–4513. doi: 10.1093/nar/20.17.4507. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nonin S., Leroy J. L., Gueron M. Acid-induced exchange of the imino proton in G.C pairs. Nucleic Acids Res. 1996 Feb 15;24(4):586–595. doi: 10.1093/nar/24.4.586. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Otting G., Wüthrich K. Heteronuclear filters in two-dimensional [1H,1H]-NMR spectroscopy: combined use with isotope labelling for studies of macromolecular conformation and intermolecular interactions. Q Rev Biophys. 1990 Feb;23(1):39–96. doi: 10.1017/s0033583500005412. [DOI] [PubMed] [Google Scholar]
- Patel D. J., Shapiro L., Hare D. DNA and RNA: NMR studies of conformations and dynamics in solution. Q Rev Biophys. 1987 Aug;20(1-2):35–112. doi: 10.1017/s0033583500004224. [DOI] [PubMed] [Google Scholar]
- Puglisi J. D., Tan R., Calnan B. J., Frankel A. D., Williamson J. R. Conformation of the TAR RNA-arginine complex by NMR spectroscopy. Science. 1992 Jul 3;257(5066):76–80. doi: 10.1126/science.1621097. [DOI] [PubMed] [Google Scholar]
- Puglisi J. D., Wyatt J. R., Tinoco I., Jr Conformation of an RNA pseudoknot. J Mol Biol. 1990 Jul 20;214(2):437–453. doi: 10.1016/0022-2836(90)90192-O. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wimberly B., Varani G., Tinoco I., Jr The conformation of loop E of eukaryotic 5S ribosomal RNA. Biochemistry. 1993 Feb 2;32(4):1078–1087. doi: 10.1021/bi00055a013. [DOI] [PubMed] [Google Scholar]