Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Apr 15;25(8):1618–1625. doi: 10.1093/nar/25.8.1618

A muscle-specific enhancer within intron 1 of the human dystrophin gene is functionally dependent on single MEF-1/E box and MEF-2/AT-rich sequence motifs.

H J Klamut 1, L O Bosnoyan-Collins 1, R G Worton 1, P N Ray 1
PMCID: PMC146611  PMID: 9092671

Abstract

In previous studies we have described a 5.0 kb Hin dIII fragment downstream of muscle exon 1 that exhibits properties consistent with a muscle-specific transcriptional enhancer. The goal of this study has been to identify the sequence elements responsible for muscle-specific enhancer activity. Functional studies indicated that this enhancer is active in pre- and post-differentiated H9C2(2-1) myoblasts but functions poorly in L6 and C2C12 myotubes. The core enhancer region was delimited to a 195 bp Spe I- Acc I fragment and sequence analysis identified three MEF-1/E box and two MEF-2/AT-rich motifs as potential muscle-specific regulatory domains. EMSA competition and DNase footprinting indicated that sequences within a 30 bp region containing single adjoining MEF-1/E box and MEF-2/AT-rich motifs are target binding sites for trans -acting factors expressed in H9C2(2-1) myotubes but not in L6 or C2C12 myotubes. Site-specific mutations within these motifs resulted in a significant reduction in enhancer activity in H9C2(2-1) myotubes. These results suggest that the mechanisms governing DMD gene expression in muscle are similar to those identified in other muscle-specific genes. However, the myogenic profile of enhancer activity and trans -acting factor binding suggests a more specialized role for this enhancer that is consistent with its potential involvement in dystrophin gene regulation in cardiac muscle.

Full Text

The Full Text of this article is available as a PDF (172.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blackwell T. K., Weintraub H. Differences and similarities in DNA-binding preferences of MyoD and E2A protein complexes revealed by binding site selection. Science. 1990 Nov 23;250(4984):1104–1110. doi: 10.1126/science.2174572. [DOI] [PubMed] [Google Scholar]
  2. Boxer L. M., Miwa T., Gustafson T. A., Kedes L. Identification and characterization of a factor that binds to two human sarcomeric actin promoters. J Biol Chem. 1989 Jan 15;264(2):1284–1292. [PubMed] [Google Scholar]
  3. Boyce F. M., Beggs A. H., Feener C., Kunkel L. M. Dystrophin is transcribed in brain from a distant upstream promoter. Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1276–1280. doi: 10.1073/pnas.88.4.1276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Braun T., Bober E., Buschhausen-Denker G., Kohtz S., Grzeschik K. H., Arnold H. H., Kotz S. Differential expression of myogenic determination genes in muscle cells: possible autoactivation by the Myf gene products. EMBO J. 1989 Dec 1;8(12):3617–3625. doi: 10.1002/j.1460-2075.1989.tb08535.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Buskin J. N., Hauschka S. D. Identification of a myocyte nuclear factor that binds to the muscle-specific enhancer of the mouse muscle creatine kinase gene. Mol Cell Biol. 1989 Jun;9(6):2627–2640. doi: 10.1128/mcb.9.6.2627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chelly J., Hamard G., Koulakoff A., Kaplan J. C., Kahn A., Berwald-Netter Y. Dystrophin gene transcribed from different promoters in neuronal and glial cells. Nature. 1990 Mar 1;344(6261):64–65. doi: 10.1038/344064a0. [DOI] [PubMed] [Google Scholar]
  7. Chelly J., Montarras D., Pinset C., Berwald-Netter Y., Kaplan J. C., Kahn A. Quantitative estimation of minor mRNAs by cDNA-polymerase chain reaction. Application to dystrophin mRNA in cultured myogenic and brain cells. Eur J Biochem. 1990 Feb 14;187(3):691–698. doi: 10.1111/j.1432-1033.1990.tb15355.x. [DOI] [PubMed] [Google Scholar]
  8. Chen C., Okayama H. High-efficiency transformation of mammalian cells by plasmid DNA. Mol Cell Biol. 1987 Aug;7(8):2745–2752. doi: 10.1128/mcb.7.8.2745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cserjesi P., Olson E. N. Myogenin induces the myocyte-specific enhancer binding factor MEF-2 independently of other muscle-specific gene products. Mol Cell Biol. 1991 Oct;11(10):4854–4862. doi: 10.1128/mcb.11.10.4854. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. D'Souza V. N., Nguyen T. M., Morris G. E., Karges W., Pillers D. A., Ray P. N. A novel dystrophin isoform is required for normal retinal electrophysiology. Hum Mol Genet. 1995 May;4(5):837–842. doi: 10.1093/hmg/4.5.837. [DOI] [PubMed] [Google Scholar]
  11. Davis R. L., Cheng P. F., Lassar A. B., Weintraub H. The MyoD DNA binding domain contains a recognition code for muscle-specific gene activation. Cell. 1990 Mar 9;60(5):733–746. doi: 10.1016/0092-8674(90)90088-v. [DOI] [PubMed] [Google Scholar]
  12. Den Dunnen J. T., Grootscholten P. M., Dauwerse J. G., Walker A. P., Monaco A. P., Butler R., Anand R., Coffey A. J., Bentley D. R., Steensma H. Y. Reconstruction of the 2.4 Mb human DMD-gene by homologous YAC recombination. Hum Mol Genet. 1992 Apr;1(1):19–28. doi: 10.1093/hmg/1.1.19. [DOI] [PubMed] [Google Scholar]
  13. Emery A. E. Clinical and molecular studies in Duchenne muscular dystrophy. Prog Clin Biol Res. 1989;306:15–28. [PubMed] [Google Scholar]
  14. Funk W. D., Wright W. E. Cyclic amplification and selection of targets for multicomponent complexes: myogenin interacts with factors recognizing binding sites for basic helix-loop-helix, nuclear factor 1, myocyte-specific enhancer-binding factor 2, and COMP1 factor. Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9484–9488. doi: 10.1073/pnas.89.20.9484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gerrelli D., Huntriss J. D., Latchman D. S. Antagonistic effects of retinoic acid and thyroid hormone on the expression of the tissue-specific splicing protein SmN in a clonal cell line derived from rat heart. J Mol Cell Cardiol. 1994 Jun;26(6):713–719. doi: 10.1006/jmcc.1994.1086. [DOI] [PubMed] [Google Scholar]
  16. Gilgenkrantz H., Hugnot J. P., Lambert M., Chafey P., Kaplan J. C., Kahn A. Positive and negative regulatory DNA elements including a CCArGG box are involved in the cell type-specific expression of the human muscle dystrophin gene. J Biol Chem. 1992 May 25;267(15):10823–10830. [PubMed] [Google Scholar]
  17. Gossett L. A., Kelvin D. J., Sternberg E. A., Olson E. N. A new myocyte-specific enhancer-binding factor that recognizes a conserved element associated with multiple muscle-specific genes. Mol Cell Biol. 1989 Nov;9(11):5022–5033. doi: 10.1128/mcb.9.11.5022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gustafson T. A., Kedes L. Identification of multiple proteins that interact with functional regions of the human cardiac alpha-actin promoter. Mol Cell Biol. 1989 Aug;9(8):3269–3283. doi: 10.1128/mcb.9.8.3269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Górecki D. C., Monaco A. P., Derry J. M., Walker A. P., Barnard E. A., Barnard P. J. Expression of four alternative dystrophin transcripts in brain regions regulated by different promoters. Hum Mol Genet. 1992 Oct;1(7):505–510. doi: 10.1093/hmg/1.7.505. [DOI] [PubMed] [Google Scholar]
  20. Hescheler J., Meyer R., Plant S., Krautwurst D., Rosenthal W., Schultz G. Morphological, biochemical, and electrophysiological characterization of a clonal cell (H9c2) line from rat heart. Circ Res. 1991 Dec;69(6):1476–1486. doi: 10.1161/01.res.69.6.1476. [DOI] [PubMed] [Google Scholar]
  21. Horlick R. A., Benfield P. A. The upstream muscle-specific enhancer of the rat muscle creatine kinase gene is composed of multiple elements. Mol Cell Biol. 1989 Jun;9(6):2396–2413. doi: 10.1128/mcb.9.6.2396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hugnot J. P., Gilgenkrantz H., Vincent N., Chafey P., Morris G. E., Monaco A. P., Berwald-Netter Y., Koulakoff A., Kaplan J. C., Kahn A. Distal transcript of the dystrophin gene initiated from an alternative first exon and encoding a 75-kDa protein widely distributed in nonmuscle tissues. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7506–7510. doi: 10.1073/pnas.89.16.7506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kaushal S., Schneider J. W., Nadal-Ginard B., Mahdavi V. Activation of the myogenic lineage by MEF2A, a factor that induces and cooperates with MyoD. Science. 1994 Nov 18;266(5188):1236–1240. doi: 10.1126/science.7973707. [DOI] [PubMed] [Google Scholar]
  24. Klamut H. J., Bosnoyan-Collins L. O., Worton R. G., Ray P. N., Davis H. L. Identification of a transcriptional enhancer within muscle intron 1 of the human dystrophin gene. Hum Mol Genet. 1996 Oct;5(10):1599–1606. doi: 10.1093/hmg/5.10.1599. [DOI] [PubMed] [Google Scholar]
  25. Klamut H. J., Gangopadhyay S. B., Worton R. G., Ray P. N. Molecular and functional analysis of the muscle-specific promoter region of the Duchenne muscular dystrophy gene. Mol Cell Biol. 1990 Jan;10(1):193–205. doi: 10.1128/mcb.10.1.193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Klamut H. J., Zubrzycka-Gaarn E. E., Bulman D. E., Malhotra S. B., Bodrug S. E., Worton R. G., Ray P. N. Myogenic regulation of dystrophin gene expression. Br Med Bull. 1989 Jul;45(3):681–702. doi: 10.1093/oxfordjournals.bmb.a072352. [DOI] [PubMed] [Google Scholar]
  27. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  28. Lassar A. B., Buskin J. N., Lockshon D., Davis R. L., Apone S., Hauschka S. D., Weintraub H. MyoD is a sequence-specific DNA binding protein requiring a region of myc homology to bind to the muscle creatine kinase enhancer. Cell. 1989 Sep 8;58(5):823–831. doi: 10.1016/0092-8674(89)90935-5. [DOI] [PubMed] [Google Scholar]
  29. Lassar A. B., Buskin J. N., Lockshon D., Davis R. L., Apone S., Hauschka S. D., Weintraub H. MyoD is a sequence-specific DNA binding protein requiring a region of myc homology to bind to the muscle creatine kinase enhancer. Cell. 1989 Sep 8;58(5):823–831. doi: 10.1016/0092-8674(89)90935-5. [DOI] [PubMed] [Google Scholar]
  30. Lassar A. B., Davis R. L., Wright W. E., Kadesch T., Murre C., Voronova A., Baltimore D., Weintraub H. Functional activity of myogenic HLH proteins requires hetero-oligomerization with E12/E47-like proteins in vivo. Cell. 1991 Jul 26;66(2):305–315. doi: 10.1016/0092-8674(91)90620-e. [DOI] [PubMed] [Google Scholar]
  31. Lederfein D., Yaffe D., Nudel U. A housekeeping type promoter, located in the 3' region of the Duchenne muscular dystrophy gene, controls the expression of Dp71, a major product of the gene. Hum Mol Genet. 1993 Nov;2(11):1883–1888. doi: 10.1093/hmg/2.11.1883. [DOI] [PubMed] [Google Scholar]
  32. Lev A. A., Feener C. C., Kunkel L. M., Brown R. H., Jr Expression of the Duchenne's muscular dystrophy gene in cultured muscle cells. J Biol Chem. 1987 Nov 25;262(33):15817–15820. [PubMed] [Google Scholar]
  33. Lidov H. G., Selig S., Kunkel L. M. Dp140: a novel 140 kDa CNS transcript from the dystrophin locus. Hum Mol Genet. 1995 Mar;4(3):329–335. doi: 10.1093/hmg/4.3.329. [DOI] [PubMed] [Google Scholar]
  34. Luckow B., Schütz G. CAT constructions with multiple unique restriction sites for the functional analysis of eukaryotic promoters and regulatory elements. Nucleic Acids Res. 1987 Jul 10;15(13):5490–5490. doi: 10.1093/nar/15.13.5490. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Ludolph D. C., Konieczny S. F. Transcription factor families: muscling in on the myogenic program. FASEB J. 1995 Dec;9(15):1595–1604. doi: 10.1096/fasebj.9.15.8529839. [DOI] [PubMed] [Google Scholar]
  36. Mar J. H., Ordahl C. P. M-CAT binding factor, a novel trans-acting factor governing muscle-specific transcription. Mol Cell Biol. 1990 Aug;10(8):4271–4283. doi: 10.1128/mcb.10.8.4271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Mejía-Alvarez R., Tomaselli G. F., Marban E. Simultaneous expression of cardiac and skeletal muscle isoforms of the L-type Ca2+ channel in a rat heart muscle cell line. J Physiol. 1994 Jul 15;478(Pt 2):315–329. doi: 10.1113/jphysiol.1994.sp020252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Mestril R., Chi S. H., Sayen M. R., O'Reilly K., Dillmann W. H. Expression of inducible stress protein 70 in rat heart myogenic cells confers protection against simulated ischemia-induced injury. J Clin Invest. 1994 Feb;93(2):759–767. doi: 10.1172/JCI117030. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Molkentin J. D., Black B. L., Martin J. F., Olson E. N. Cooperative activation of muscle gene expression by MEF2 and myogenic bHLH proteins. Cell. 1995 Dec 29;83(7):1125–1136. doi: 10.1016/0092-8674(95)90139-6. [DOI] [PubMed] [Google Scholar]
  40. Muntoni F., Cau M., Ganau A., Congiu R., Arvedi G., Mateddu A., Marrosu M. G., Cianchetti C., Realdi G., Cao A. Brief report: deletion of the dystrophin muscle-promoter region associated with X-linked dilated cardiomyopathy. N Engl J Med. 1993 Sep 23;329(13):921–925. doi: 10.1056/NEJM199309233291304. [DOI] [PubMed] [Google Scholar]
  41. Nishio H., Takeshima Y., Narita N., Yanagawa H., Suzuki Y., Ishikawa Y., Ishikawa Y., Minami R., Nakamura H., Matsuo M. Identification of a novel first exon in the human dystrophin gene and of a new promoter located more than 500 kb upstream of the nearest known promoter. J Clin Invest. 1994 Sep;94(3):1037–1042. doi: 10.1172/JCI117417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Olson E. N., Perry M., Schulz R. A. Regulation of muscle differentiation by the MEF2 family of MADS box transcription factors. Dev Biol. 1995 Nov;172(1):2–14. doi: 10.1006/dbio.1995.0002. [DOI] [PubMed] [Google Scholar]
  43. Roberts R. G., Coffey A. J., Bobrow M., Bentley D. R. Exon structure of the human dystrophin gene. Genomics. 1993 May;16(2):536–538. doi: 10.1006/geno.1993.1225. [DOI] [PubMed] [Google Scholar]
  44. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Tennyson C. N., Klamut H. J., Worton R. G. The human dystrophin gene requires 16 hours to be transcribed and is cotranscriptionally spliced. Nat Genet. 1995 Feb;9(2):184–190. doi: 10.1038/ng0295-184. [DOI] [PubMed] [Google Scholar]
  46. Tennyson C. N., Shi Q., Worton R. G. Stability of the human dystrophin transcript in muscle. Nucleic Acids Res. 1996 Aug 1;24(15):3059–3064. doi: 10.1093/nar/24.15.3059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Walsh K. Cross-binding of factors to functionally different promoter elements in c-fos and skeletal actin genes. Mol Cell Biol. 1989 May;9(5):2191–2201. doi: 10.1128/mcb.9.5.2191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Weintraub H., Davis R., Lockshon D., Lassar A. MyoD binds cooperatively to two sites in a target enhancer sequence: occupancy of two sites is required for activation. Proc Natl Acad Sci U S A. 1990 Aug;87(15):5623–5627. doi: 10.1073/pnas.87.15.5623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Weintraub H., Davis R., Tapscott S., Thayer M., Krause M., Benezra R., Blackwell T. K., Turner D., Rupp R., Hollenberg S. The myoD gene family: nodal point during specification of the muscle cell lineage. Science. 1991 Feb 15;251(4995):761–766. doi: 10.1126/science.1846704. [DOI] [PubMed] [Google Scholar]
  50. Weintraub H. The MyoD family and myogenesis: redundancy, networks, and thresholds. Cell. 1993 Dec 31;75(7):1241–1244. doi: 10.1016/0092-8674(93)90610-3. [DOI] [PubMed] [Google Scholar]
  51. Whittaker P. A., Wood L., Mathrubutham M., Anand R. Generation of ordered phage sublibraries of YAC clones: construction of a 400-kb phage contig in the human dystrophin gene. Genomics. 1993 Feb;15(2):453–456. doi: 10.1006/geno.1993.1089. [DOI] [PubMed] [Google Scholar]
  52. Yoshida K., Ikeda S., Nakamura A., Kagoshima M., Takeda S., Shoji S., Yanagisawa N. Molecular analysis of the Duchenne muscular dystrophy gene in patients with Becker muscular dystrophy presenting with dilated cardiomyopathy. Muscle Nerve. 1993 Nov;16(11):1161–1166. doi: 10.1002/mus.880161104. [DOI] [PubMed] [Google Scholar]
  53. Yu Y. T., Breitbart R. E., Smoot L. B., Lee Y., Mahdavi V., Nadal-Ginard B. Human myocyte-specific enhancer factor 2 comprises a group of tissue-restricted MADS box transcription factors. Genes Dev. 1992 Sep;6(9):1783–1798. doi: 10.1101/gad.6.9.1783. [DOI] [PubMed] [Google Scholar]
  54. Zhou M. D., Goswami S. K., Martin M. E., Siddiqui M. A. A new serum-responsive, cardiac tissue-specific transcription factor that recognizes the MEF-2 site in the myosin light chain-2 promoter. Mol Cell Biol. 1993 Feb;13(2):1222–1231. doi: 10.1128/mcb.13.2.1222. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES