Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 Apr 15;25(8):1641–1648. doi: 10.1093/nar/25.8.1641

BC1 RNA, the transcript from a master gene for ID element amplification, is able to prime its own reverse transcription.

M R Shen 1, J Brosius 1, P L Deininger 1
PMCID: PMC146617  PMID: 9092674

Abstract

ID elements are short interspersed elements (SINEs) found in high copy number in many rodent genomes. BC1 RNA, an ID-related transcript, is derived from the single copy BC1 RNA gene. The BC1 RNA gene has been shown to be a master gene for ID element amplification in rodent genomes. ID elements are dispersed through a process termed retroposition. The retroposition process involves a number of potential regulatory steps. These regulatory steps may include transcription in the appropriate tissue, transcript stability, priming of the RNA transcript for reverse transcription and integration. This study focuses on priming of the RNA transcript for reverse transcription. BC1 RNA gene transcripts are shown to be able to prime their own reverse transcription in an efficient intramolecular and site-specific fashion. This self-priming ability is a consequence of the secondary structure of the 3'-unique region. The observation that a gene actively amplified throughout rodent evolution makes a RNA capable of efficient self-primed reverse transcription strongly suggests that self-priming is at least one feature establishing the BC1 RNA gene as a master gene for amplification of ID elements.

Full Text

The Full Text of this article is available as a PDF (160.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bernstein L. B., Mount S. M., Weiner A. M. Pseudogenes for human small nuclear RNA U3 appear to arise by integration of self-primed reverse transcripts of the RNA into new chromosomal sites. Cell. 1983 Feb;32(2):461–472. doi: 10.1016/0092-8674(83)90466-x. [DOI] [PubMed] [Google Scholar]
  2. Branciforte D., Martin S. L. Developmental and cell type specificity of LINE-1 expression in mouse testis: implications for transposition. Mol Cell Biol. 1994 Apr;14(4):2584–2592. doi: 10.1128/mcb.14.4.2584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brosius J., Tiedge H. Reverse transcriptase: mediator of genomic plasticity. Virus Genes. 1995;11(2-3):163–179. doi: 10.1007/BF01728656. [DOI] [PubMed] [Google Scholar]
  4. Cheng J. G., Tiedge H., Brosius J. Identification and characterization of BC1 RNP particles. DNA Cell Biol. 1996 Jul;15(7):549–559. doi: 10.1089/dna.1996.15.549. [DOI] [PubMed] [Google Scholar]
  5. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  6. Daniels G. R., Deininger P. L. Repeat sequence families derived from mammalian tRNA genes. 1985 Oct 31-Nov 6Nature. 317(6040):819–822. doi: 10.1038/317819a0. [DOI] [PubMed] [Google Scholar]
  7. DeChiara T. M., Brosius J. Neural BC1 RNA: cDNA clones reveal nonrepetitive sequence content. Proc Natl Acad Sci U S A. 1987 May;84(9):2624–2628. doi: 10.1073/pnas.84.9.2624. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Deininger P. L., Batzer M. A., Hutchison C. A., 3rd, Edgell M. H. Master genes in mammalian repetitive DNA amplification. Trends Genet. 1992 Sep;8(9):307–311. doi: 10.1016/0168-9525(92)90262-3. [DOI] [PubMed] [Google Scholar]
  9. Dombroski B. A., Mathias S. L., Nanthakumar E., Scott A. F., Kazazian H. H., Jr Isolation of an active human transposable element. Science. 1991 Dec 20;254(5039):1805–1808. doi: 10.1126/science.1662412. [DOI] [PubMed] [Google Scholar]
  10. Gabrielsen O. S., Sentenac A. RNA polymerase III (C) and its transcription factors. Trends Biochem Sci. 1991 Nov;16(11):412–416. doi: 10.1016/0968-0004(91)90166-s. [DOI] [PubMed] [Google Scholar]
  11. Geiduschek E. P., Tocchini-Valentini G. P. Transcription by RNA polymerase III. Annu Rev Biochem. 1988;57:873–914. doi: 10.1146/annurev.bi.57.070188.004301. [DOI] [PubMed] [Google Scholar]
  12. Gurevich V. V., Pokrovskaya I. D., Obukhova T. A., Zozulya S. A. Preparative in vitro mRNA synthesis using SP6 and T7 RNA polymerases. Anal Biochem. 1991 Jun;195(2):207–213. doi: 10.1016/0003-2697(91)90318-n. [DOI] [PubMed] [Google Scholar]
  13. Hammarström K., Westin G., Pettersson U. A pseudogene for human U4 RNA with a remarkable structure. EMBO J. 1982;1(6):737–739. doi: 10.1002/j.1460-2075.1982.tb01239.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jaeger J. A., Turner D. H., Zuker M. Improved predictions of secondary structures for RNA. Proc Natl Acad Sci U S A. 1989 Oct;86(20):7706–7710. doi: 10.1073/pnas.86.20.7706. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jagadeeswaran P., Forget B. G., Weissman S. M. Short interspersed repetitive DNA elements in eucaryotes: transposable DNA elements generated by reverse transcription of RNA pol III transcripts? Cell. 1981 Oct;26(2 Pt 2):141–142. doi: 10.1016/0092-8674(81)90296-8. [DOI] [PubMed] [Google Scholar]
  16. Kim J., Kass D. H., Deininger P. L. Transcription and processing of the rodent ID repeat family in germline and somatic cells. Nucleic Acids Res. 1995 Jun 25;23(12):2245–2251. doi: 10.1093/nar/23.12.2245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kim J., Martignetti J. A., Shen M. R., Brosius J., Deininger P. Rodent BC1 RNA gene as a master gene for ID element amplification. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):3607–3611. doi: 10.1073/pnas.91.9.3607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Liu W. M., Maraia R. J., Rubin C. M., Schmid C. W. Alu transcripts: cytoplasmic localisation and regulation by DNA methylation. Nucleic Acids Res. 1994 Mar 25;22(6):1087–1095. doi: 10.1093/nar/22.6.1087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Luan D. D., Eickbush T. H. RNA template requirements for target DNA-primed reverse transcription by the R2 retrotransposable element. Mol Cell Biol. 1995 Jul;15(7):3882–3891. doi: 10.1128/mcb.15.7.3882. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Maraia R. J., Chang D. Y., Wolffe A. P., Vorce R. L., Hsu K. The RNA polymerase III terminator used by a B1-Alu element can modulate 3' processing of the intermediate RNA product. Mol Cell Biol. 1992 Apr;12(4):1500–1506. doi: 10.1128/mcb.12.4.1500. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Maraia R. J., Driscoll C. T., Bilyeu T., Hsu K., Darlington G. J. Multiple dispersed loci produce small cytoplasmic Alu RNA. Mol Cell Biol. 1993 Jul;13(7):4233–4241. doi: 10.1128/mcb.13.7.4233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Maraia R. J., Kenan D. J., Keene J. D. Eukaryotic transcription termination factor La mediates transcript release and facilitates reinitiation by RNA polymerase III. Mol Cell Biol. 1994 Mar;14(3):2147–2158. doi: 10.1128/mcb.14.3.2147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Martignetti J. A., Brosius J. BC1 RNA: transcriptional analysis of a neural cell-specific RNA polymerase III transcript. Mol Cell Biol. 1995 Mar;15(3):1642–1650. doi: 10.1128/mcb.15.3.1642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Martignetti J. A., Brosius J. Neural BC1 RNA as an evolutionary marker: guinea pig remains a rodent. Proc Natl Acad Sci U S A. 1993 Oct 15;90(20):9698–9702. doi: 10.1073/pnas.90.20.9698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Matera A. G., Hellmann U., Schmid C. W. A transpositionally and transcriptionally competent Alu subfamily. Mol Cell Biol. 1990 Oct;10(10):5424–5432. doi: 10.1128/mcb.10.10.5424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mathias S. L., Scott A. F., Kazazian H. H., Jr, Boeke J. D., Gabriel A. Reverse transcriptase encoded by a human transposable element. Science. 1991 Dec 20;254(5039):1808–1810. doi: 10.1126/science.1722352. [DOI] [PubMed] [Google Scholar]
  27. McKinnon R. D., Danielson P., Brow M. A., Bloom F. E., Sutcliffe J. G. Expression of small cytoplasmic transcripts of the rat identifier element in vivo and in cultured cells. Mol Cell Biol. 1987 Jun;7(6):2148–2154. doi: 10.1128/mcb.7.6.2148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Meador J., 3rd, Cannon B., Cannistraro V. J., Kennell D. Purification and characterization of Escherichia coli RNase I. Comparisons with RNase M. Eur J Biochem. 1990 Feb 14;187(3):549–553. doi: 10.1111/j.1432-1033.1990.tb15336.x. [DOI] [PubMed] [Google Scholar]
  29. Mertz L. M., Rashtchian A. Nucleotide imbalance and polymerase chain reaction: effects on DNA amplification and synthesis of high specific activity radiolabeled DNA probes. Anal Biochem. 1994 Aug 15;221(1):160–165. doi: 10.1006/abio.1994.1392. [DOI] [PubMed] [Google Scholar]
  30. Murphy S., Altruda F., Ullu E., Tripodi M., Silengo L., Melli M. DNA sequences complementary to human 7 SK RNA show structural similarities to the short mobile elements of the mammalian genome. J Mol Biol. 1984 Aug 25;177(4):575–590. doi: 10.1016/0022-2836(84)90038-x. [DOI] [PubMed] [Google Scholar]
  31. Saba J. A., Busch H., Reddy R. U4 small nuclear RNA pseudogenes from rat genome have common truncated 3'-ends. Biochem Biophys Res Commun. 1985 Jul 31;130(2):828–834. doi: 10.1016/0006-291x(85)90491-7. [DOI] [PubMed] [Google Scholar]
  32. Sakaki Y., Hattori M., Fujita A., Yoshioka K., Kuhara S., Takenaka O. The LINE-1 family of primates may encode a reverse transcriptase-like protein. Cold Spring Harb Symp Quant Biol. 1986;51(Pt 1):465–469. doi: 10.1101/sqb.1986.051.01.056. [DOI] [PubMed] [Google Scholar]
  33. Sakamoto K., Okada N. 5-Methylcytidylic modification of in vitro transcript from the rat identifier sequence; evidence that the transcript forms a tRNA-like structure. Nucleic Acids Res. 1985 Oct 25;13(20):7195–7206. doi: 10.1093/nar/13.20.7195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Sapienza C., St-Jacques B. 'Brain-specific' transcription and evolution of the identifier sequence. 1986 Jan 30-Feb 5Nature. 319(6052):418–420. doi: 10.1038/319418a0. [DOI] [PubMed] [Google Scholar]
  35. Schmid C., Maraia R. Transcriptional regulation and transpositional selection of active SINE sequences. Curr Opin Genet Dev. 1992 Dec;2(6):874–882. doi: 10.1016/s0959-437x(05)80110-8. [DOI] [PubMed] [Google Scholar]
  36. Shen M. R., Batzer M. A., Deininger P. L. Evolution of the master Alu gene(s). J Mol Evol. 1991 Oct;33(4):311–320. doi: 10.1007/BF02102862. [DOI] [PubMed] [Google Scholar]
  37. Sinnett D., Richer C., Deragon J. M., Labuda D. Alu RNA transcripts in human embryonal carcinoma cells. Model of post-transcriptional selection of master sequences. J Mol Biol. 1992 Aug 5;226(3):689–706. doi: 10.1016/0022-2836(92)90626-u. [DOI] [PubMed] [Google Scholar]
  38. Slagel V. K., Deininger P. L. In vivo transcription of a cloned prosimian primate SINE sequence. Nucleic Acids Res. 1989 Nov 11;17(21):8669–8682. doi: 10.1093/nar/17.21.8669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Suh D., Yuan Y., Henning D., Reddy R. Secondary structure of 7SK and 7-2 small RNAs. Possible origin of some 7SK pseudogenes from cDNA formed through self-priming by 7SK RNA. Eur J Biochem. 1989 Dec 8;186(1-2):221–226. doi: 10.1111/j.1432-1033.1989.tb15198.x. [DOI] [PubMed] [Google Scholar]
  40. Sutcliffe J. G., Milner R. J., Bloom F. E., Lerner R. A. Common 82-nucleotide sequence unique to brain RNA. Proc Natl Acad Sci U S A. 1982 Aug;79(16):4942–4946. doi: 10.1073/pnas.79.16.4942. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Sutcliffe J. G., Milner R. J., Gottesfeld J. M., Lerner R. A. Identifier sequences are transcribed specifically in brain. Nature. 1984 Mar 15;308(5956):237–241. doi: 10.1038/308237a0. [DOI] [PubMed] [Google Scholar]
  42. Ullu E., Weiner A. M. Upstream sequences modulate the internal promoter of the human 7SL RNA gene. 1985 Nov 28-Dec 4Nature. 318(6044):371–374. doi: 10.1038/318371a0. [DOI] [PubMed] [Google Scholar]
  43. Wassarman D. A., Steitz J. A. Structural analyses of the 7SK ribonucleoprotein (RNP), the most abundant human small RNP of unknown function. Mol Cell Biol. 1991 Jul;11(7):3432–3445. doi: 10.1128/mcb.11.7.3432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Weiner A. M., Deininger P. L., Efstratiadis A. Nonviral retroposons: genes, pseudogenes, and transposable elements generated by the reverse flow of genetic information. Annu Rev Biochem. 1986;55:631–661. doi: 10.1146/annurev.bi.55.070186.003215. [DOI] [PubMed] [Google Scholar]
  45. Young L. S., Takahashi N., Sprague K. U. Upstream sequences confer distinctive transcriptional properties on genes encoding silkgland-specific tRNAAla. Proc Natl Acad Sci U S A. 1986 Jan;83(2):374–378. doi: 10.1073/pnas.83.2.374. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES