Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 May 1;25(9):1782–1787. doi: 10.1093/nar/25.9.1782

A physico-chemical study of triple helix formation by an oligodeoxythymidylate with N3'--> P5' phosphoramidate linkages.

B Zhou-Sun 1, J Sun 1, S M Gryaznov 1, J Liquier 1, T Garestier 1, C Hélène 1, E Taillandier 1
PMCID: PMC146641  PMID: 9108161

Abstract

Non-denaturing gel retardation assay, DNA melting experiments and FTIR spectroscopy were used to characterize the triple helix formed by a 15mer 2'-deoxythymidylate with N3'-->P5'phosphoramidate linkages with its target sequence. The results indicate that: (i) the pentadecadeoxythymidylate with phosphoramidate linkages [dT15(np)] is highly potent to form a triple helix with a dT15*dA15target duplex through Hoogsteenbase-pairing; (ii) it forms a dT15(np)*dA15xdT15(np) triplex with the single-stranded oligo-2'-deoxyadenylate (dA15) without detectable double-helical intermediate; (iii) it does not only form a triple helix on the dT15*dA15target duplex, but also partially displaces the dT15 strand from the dT15*dA15duplex to form a dT15(np)*dA15xdT15(np) complex.

Full Text

The Full Text of this article is available as a PDF (112.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cantor C. R., Warshaw M. M., Shapiro H. Oligonucleotide interactions. 3. Circular dichroism studies of the conformation of deoxyoligonucleotides. Biopolymers. 1970;9(9):1059–1077. doi: 10.1002/bip.1970.360090909. [DOI] [PubMed] [Google Scholar]
  2. Dagneaux C., Liquier J., Taillandier E. FTIR study of a nonclassical dT10*dA10-dT10 intramolecular triple helix. Biochemistry. 1995 Nov 14;34(45):14815–14818. doi: 10.1021/bi00045a023. [DOI] [PubMed] [Google Scholar]
  3. Escudé C., Giovannangeli C., Sun J. S., Lloyd D. H., Chen J. K., Gryaznov S. M., Garestier T., Hélène C. Stable triple helices formed by oligonucleotide N3'-->P5' phosphoramidates inhibit transcription elongation. Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):4365–4369. doi: 10.1073/pnas.93.9.4365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Escudé C., Mohammadi S., Sun J. S., Nguyen C. H., Bisagni E., Liquier J., Taillandier E., Garestier T., Hélène C. Ligand-induced formation of hoogsteen-paired parallel DNA. Chem Biol. 1996 Jan;3(1):57–65. doi: 10.1016/s1074-5521(96)90085-x. [DOI] [PubMed] [Google Scholar]
  5. Fritzsche H., Akhebat A., Taillandier E., Rippe K., Jovin T. M. Structure and drug interactions of parallel-stranded DNA studied by infrared spectroscopy and fluorescence. Nucleic Acids Res. 1993 Nov 11;21(22):5085–5091. doi: 10.1093/nar/21.22.5085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Giovannangeli C., Diviacco S., Labrousse V., Gryaznov S., Charneau P., Helene C. Accessibility of nuclear DNA to triplex-forming oligonucleotides: the integrated HIV-1 provirus as a target. Proc Natl Acad Sci U S A. 1997 Jan 7;94(1):79–84. doi: 10.1073/pnas.94.1.79. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hélène C. Control of oncogene expression by antisense nucleic acids. Eur J Cancer. 1994;30A(11):1721–1726. doi: 10.1016/0959-8049(93)e0352-q. [DOI] [PubMed] [Google Scholar]
  8. Hélène C., Toulmé J. J. Specific regulation of gene expression by antisense, sense and antigene nucleic acids. Biochim Biophys Acta. 1990 Jun 21;1049(2):99–125. doi: 10.1016/0167-4781(90)90031-v. [DOI] [PubMed] [Google Scholar]
  9. Le Doan T., Perrouault L., Praseuth D., Habhoub N., Decout J. L., Thuong N. T., Lhomme J., Hélène C. Sequence-specific recognition, photocrosslinking and cleavage of the DNA double helix by an oligo-[alpha]-thymidylate covalently linked to an azidoproflavine derivative. Nucleic Acids Res. 1987 Oct 12;15(19):7749–7760. doi: 10.1093/nar/15.19.7749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Liquier J., Coffinier P., Firon M., Taillandier E. Triple helical polynucleotidic structures: sugar conformations determined by FTIR spectroscopy. J Biomol Struct Dyn. 1991 Dec;9(3):437–445. doi: 10.1080/07391102.1991.10507927. [DOI] [PubMed] [Google Scholar]
  11. Moser H. E., Dervan P. B. Sequence-specific cleavage of double helical DNA by triple helix formation. Science. 1987 Oct 30;238(4827):645–650. doi: 10.1126/science.3118463. [DOI] [PubMed] [Google Scholar]
  12. Pilch D. S., Brousseau R., Shafer R. H. Thermodynamics of triple helix formation: spectrophotometric studies on the d(A)10.2d(T)10 and d(C+3T4C+3).d(G3A4G3).d(C3T4C3) triple helices. Nucleic Acids Res. 1990 Oct 11;18(19):5743–5750. doi: 10.1093/nar/18.19.5743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Stein C. A., Cheng Y. C. Antisense oligonucleotides as therapeutic agents--is the bullet really magical? Science. 1993 Aug 20;261(5124):1004–1012. doi: 10.1126/science.8351515. [DOI] [PubMed] [Google Scholar]
  14. Thomas T., Thomas T. J. Selectivity of polyamines in triplex DNA stabilization. Biochemistry. 1993 Dec 21;32(50):14068–14074. doi: 10.1021/bi00213a041. [DOI] [PubMed] [Google Scholar]
  15. Wagner R. W. Gene inhibition using antisense oligodeoxynucleotides. Nature. 1994 Nov 24;372(6504):333–335. doi: 10.1038/372333a0. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES