Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 May 1;25(9):1817–1824. doi: 10.1093/nar/25.9.1817

Lead-catalysed specific cleavage of ribosomal RNAs.

D Winter 1, N Polacek 1, I Halama 1, B Streicher 1, A Barta 1
PMCID: PMC146643  PMID: 9108166

Abstract

Ribosomes have long been known to require divalent metal ions for their functional integrity. Pb2+-induced cleavage of the sugar-phosphate backbone has now been used to probe for metal binding sites in rRNA. Only three prominent Pb2+cleavages have been detected, with cleavage sites 5' of G240 in 16S rRNA and two sites 5' of A505 and C2347 in 23S rRNA. All cleavages occur in non-paired regions of the secondary structure models of the rRNAs and can be competed for by high concentrations of Mg2+, Mn2+, Ca2+ and Zn2+ ions, suggesting that lead is bound to general metal binding sites. Although Pb2+ cleavage is very efficient, ribosomes with fragmented RNAs are still functional in binding tRNA and in peptidyl transferase activity, indicating that the scissions do not significantly alter ribosomal structure. One of the lead cleavage sites (C2347 in 23S RNA) occurs in the vicinity of a region which is implicated in tRNA binding and peptidyl transferase activity. These results are discussed in the light of a recent model which proposes that peptide bond formation might be a metal-catalysed process.

Full Text

The Full Text of this article is available as a PDF (195.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Branlant C., Krol A., Machatt M. A., Pouyet J., Ebel J. P., Edwards K., Kössel H. Primary and secondary structures of Escherichia coli MRE 600 23S ribosomal RNA. Comparison with models of secondary structure for maize chloroplast 23S rRNA and for large portions of mouse and human 16S mitochondrial rRNAs. Nucleic Acids Res. 1981 Sep 11;9(17):4303–4324. doi: 10.1093/nar/9.17.4303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brimacombe R., Stiege W. Structure and function of ribosomal RNA. Biochem J. 1985 Jul 1;229(1):1–17. doi: 10.1042/bj2290001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brown R. S., Dewan J. C., Klug A. Crystallographic and biochemical investigation of the lead(II)-catalyzed hydrolysis of yeast phenylalanine tRNA. Biochemistry. 1985 Aug 27;24(18):4785–4801. doi: 10.1021/bi00339a012. [DOI] [PubMed] [Google Scholar]
  4. Brown R. S., Hingerty B. E., Dewan J. C., Klug A. Pb(II)-catalysed cleavage of the sugar-phosphate backbone of yeast tRNAPhe--implications for lead toxicity and self-splicing RNA. Nature. 1983 Jun 9;303(5917):543–546. doi: 10.1038/303543a0. [DOI] [PubMed] [Google Scholar]
  5. Chan Y. L., Endo Y., Wool I. G. The sequence of the nucleotides at the alpha-sarcin cleavage site in rat 28 S ribosomal ribonucleic acid. J Biol Chem. 1983 Nov 10;258(21):12768–12770. [PubMed] [Google Scholar]
  6. Ciesiolka J., Hardt W. D., Schlegl J., Erdmann V. A., Hartmann R. K. Lead-ion-induced cleavage of RNase P RNA. Eur J Biochem. 1994 Jan 15;219(1-2):49–56. doi: 10.1111/j.1432-1033.1994.tb19913.x. [DOI] [PubMed] [Google Scholar]
  7. Ciesiołka J., Lorenz S., Erdmann V. A. Structural analysis of three prokaryotic 5S rRNA species and selected 5S rRNA--ribosomal-protein complexes by means of Pb(II)-induced hydrolysis. Eur J Biochem. 1992 Mar 1;204(2):575–581. doi: 10.1111/j.1432-1033.1992.tb16670.x. [DOI] [PubMed] [Google Scholar]
  8. Dai X., De Mesmaeker A., Joyce G. F. Cleavage of an amide bond by a ribozyme. Science. 1995 Jan 13;267(5195):237–240. doi: 10.1126/science.7809628. [DOI] [PubMed] [Google Scholar]
  9. Farkas W. R. Depolymerization of ribonucleic acid by plumbous ion. Biochim Biophys Acta. 1968 Feb 26;155(2):401–409. doi: 10.1016/0005-2787(68)90184-6. [DOI] [PubMed] [Google Scholar]
  10. Fink D. L., Chen R. O., Noller H. F., Altman R. B. Computational methods for defining the allowed conformational space of 16S rRNA based on chemical footprinting data. RNA. 1996 Sep;2(9):851–866. [PMC free article] [PubMed] [Google Scholar]
  11. Geigenmüller U., Nierhaus K. H. Significance of the third tRNA binding site, the E site, on E. coli ribosomes for the accuracy of translation: an occupied E site prevents the binding of non-cognate aminoacyl-tRNA to the A site. EMBO J. 1990 Dec;9(13):4527–4533. doi: 10.1002/j.1460-2075.1990.tb07904.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gornicki P., Baudin F., Romby P., Wiewiorowski M., Kryzosiak W., Ebel J. P., Ehresmann C., Ehresmann B. Use of lead(II) to probe the structure of large RNA's. Conformation of the 3' terminal domain of E. coli 16S rRNA and its involvement in building the tRNA binding sites. J Biomol Struct Dyn. 1989 Apr;6(5):971–984. doi: 10.1080/07391102.1989.10506525. [DOI] [PubMed] [Google Scholar]
  13. Gutell R. R., Larsen N., Woese C. R. Lessons from an evolving rRNA: 16S and 23S rRNA structures from a comparative perspective. Microbiol Rev. 1994 Mar;58(1):10–26. doi: 10.1128/mr.58.1.10-26.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Illangasekare M., Sanchez G., Nickles T., Yarus M. Aminoacyl-RNA synthesis catalyzed by an RNA. Science. 1995 Feb 3;267(5198):643–647. doi: 10.1126/science.7530860. [DOI] [PubMed] [Google Scholar]
  15. Karimi R., Ehrenberg M. Dissociation rates of peptidyl-tRNA from the P-site of E.coli ribosomes. EMBO J. 1996 Mar 1;15(5):1149–1154. [PMC free article] [PubMed] [Google Scholar]
  16. Kimes B. W., Morris D. R. Cations and ribosome structure. II. Effects on the 50S subunit of substituting polyamines for magnesium ion. Biochemistry. 1973 Jan 30;12(3):442–449. doi: 10.1021/bi00727a013. [DOI] [PubMed] [Google Scholar]
  17. Krzyzosiak W. J., Marciniec T., Wiewiorowski M., Romby P., Ebel J. P., Giegé R. Characterization of the lead(II)-induced cleavages in tRNAs in solution and effect of the Y-base removal in yeast tRNAPhe. Biochemistry. 1988 Jul 26;27(15):5771–5777. doi: 10.1021/bi00415a056. [DOI] [PubMed] [Google Scholar]
  18. Kuechler E., Steiner G., Barta A. Photoaffinity labeling of peptidyltransferase. Methods Enzymol. 1988;164:361–372. doi: 10.1016/s0076-6879(88)64055-9. [DOI] [PubMed] [Google Scholar]
  19. Lohse P. A., Szostak J. W. Ribozyme-catalysed amino-acid transfer reactions. Nature. 1996 May 30;381(6581):442–444. doi: 10.1038/381442a0. [DOI] [PubMed] [Google Scholar]
  20. Maden B. E., Monro R. E. Ribosome-catalyzed peptidyl transfer. Effects of cations and pH value. Eur J Biochem. 1968 Nov;6(2):309–316. doi: 10.1111/j.1432-1033.1968.tb00450.x. [DOI] [PubMed] [Google Scholar]
  21. Malhotra A., Harvey S. C. A quantitative model of the Escherichia coli 16 S RNA in the 30 S ribosomal subunit. J Mol Biol. 1994 Jul 22;240(4):308–340. doi: 10.1006/jmbi.1994.1448. [DOI] [PubMed] [Google Scholar]
  22. Noller H. F., Green R., Heilek G., Hoffarth V., Hüttenhofer A., Joseph S., Lee I., Lieberman K., Mankin A., Merryman C. Structure and function of ribosomal RNA. Biochem Cell Biol. 1995 Nov-Dec;73(11-12):997–1009. doi: 10.1139/o95-107. [DOI] [PubMed] [Google Scholar]
  23. Noller H. F., Hoffarth V., Zimniak L. Unusual resistance of peptidyl transferase to protein extraction procedures. Science. 1992 Jun 5;256(5062):1416–1419. doi: 10.1126/science.1604315. [DOI] [PubMed] [Google Scholar]
  24. Noller H. F., Kop J., Wheaton V., Brosius J., Gutell R. R., Kopylov A. M., Dohme F., Herr W., Stahl D. A., Gupta R. Secondary structure model for 23S ribosomal RNA. Nucleic Acids Res. 1981 Nov 25;9(22):6167–6189. doi: 10.1093/nar/9.22.6167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Noller H. F. Structure of ribosomal RNA. Annu Rev Biochem. 1984;53:119–162. doi: 10.1146/annurev.bi.53.070184.001003. [DOI] [PubMed] [Google Scholar]
  26. Noller H. F., Woese C. R. Secondary structure of 16S ribosomal RNA. Science. 1981 Apr 24;212(4493):403–411. doi: 10.1126/science.6163215. [DOI] [PubMed] [Google Scholar]
  27. Noller H. F. tRNA-rRNA interactions and peptidyl transferase. FASEB J. 1993 Jan;7(1):87–89. doi: 10.1096/fasebj.7.1.8422979. [DOI] [PubMed] [Google Scholar]
  28. Pan T., Gutell R. R., Uhlenbeck O. C. Folding of circularly permuted transfer RNAs. Science. 1991 Nov 29;254(5036):1361–1364. doi: 10.1126/science.1720569. [DOI] [PubMed] [Google Scholar]
  29. Rheinberger H. J., Geigenmüller U., Wedde M., Nierhaus K. H. Parameters for the preparation of Escherichia coli ribosomes and ribosomal subunits active in tRNA binding. Methods Enzymol. 1988;164:658–670. doi: 10.1016/s0076-6879(88)64076-6. [DOI] [PubMed] [Google Scholar]
  30. Stiegler P., Carbon P., Zuker M., Ebel J. P., Ehresmann C. Structural organization of the 16S ribosomal RNA from E. coli. Topography and secondary structure. Nucleic Acids Res. 1981 May 11;9(9):2153–2172. doi: 10.1093/nar/9.9.2153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Streicher B., Westhof E., Schroeder R. The environment of two metal ions surrounding the splice site of a group I intron. EMBO J. 1996 May 15;15(10):2556–2564. [PMC free article] [PubMed] [Google Scholar]
  32. Streicher B., von Ahsen U., Schroeder R. Lead cleavage sites in the core structure of group I intron-RNA. Nucleic Acids Res. 1993 Jan 25;21(2):311–317. doi: 10.1093/nar/21.2.311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Weiss R. L., Kimes B. W., Morris D. R. Cations and ribosome structure. 3. Effects on the 30S and 50S subunits of replacing bound Mg 2+ by inorganic cations. Biochemistry. 1973 Jan 30;12(3):450–456. doi: 10.1021/bi00727a014. [DOI] [PubMed] [Google Scholar]
  34. Weiss R. L., Morris D. R. Cations and ribosome structure. I. Effects on the 30S subunit of substituting polyamines for magnesium ion. Biochemistry. 1973 Jan 30;12(3):435–441. doi: 10.1021/bi00727a012. [DOI] [PubMed] [Google Scholar]
  35. Werner C., Krebs B., Keith G., Dirheimer G. Specific cleavages of pure tRNAs by plumbous ions. Biochim Biophys Acta. 1976 May 3;432(2):161–175. doi: 10.1016/0005-2787(76)90158-1. [DOI] [PubMed] [Google Scholar]
  36. Wilson C., Szostak J. W. In vitro evolution of a self-alkylating ribozyme. Nature. 1995 Apr 27;374(6525):777–782. doi: 10.1038/374777a0. [DOI] [PubMed] [Google Scholar]
  37. Wower J., Wower I. K., Kirillov S. V., Rosen K. V., Hixson S. S., Zimmermann R. A. Peptidyl transferase and beyond. Biochem Cell Biol. 1995 Nov-Dec;73(11-12):1041–1047. doi: 10.1139/o95-111. [DOI] [PubMed] [Google Scholar]
  38. Zito K., Hüttenhofer A., Pace N. R. Lead-catalyzed cleavage of ribonuclease P RNA as a probe for integrity of tertiary structure. Nucleic Acids Res. 1993 Dec 25;21(25):5916–5920. doi: 10.1093/nar/21.25.5916. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES