Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 May 1;25(9):1854–1858. doi: 10.1093/nar/25.9.1854

Ligation-mediated PCR amplification of specific fragments from a class-II restriction endonuclease total digest.

R A Guilfoyle 1, C L Leeck 1, K D Kroening 1, L M Smith 1, Z Guo 1
PMCID: PMC146646  PMID: 9108171

Abstract

A method is described which permits the ligation- mediated PCR amplification of specific fragments from a Class-II restriction endonuclease total digest. Feasibility was tested using Bcl I and phage lambda DNA as a model enzyme and amplicon system, respectively. Bcl I is one of many widely used restriction enzymes which cleave at palindromic recognition sequences and leave 5'-protruding ends of defined sequence. Using a single pair of universal primers, a given fragment can be specifically amplified after joining the fragments to adaptors consisting of a duplex primer region and a 9-nucleotide protruding single-stranded 5'-end containing the sequence complementary to the cleaved restriction site and a 4-nucleotide 'indexing sequence.' The protruding strand anneals to a restriction fragment by displacing its corresponding strand in the same fragment-specific indexing sequence located juxtaposed to the restriction site. The adaptor is covalently linked to the restriction fragment by T4 DNA ligase, and amplification is carried out under conditions for long-distance PCR using the M13 forward and reverse primers. The technique discriminated robustly between mismatches and perfect matches for the 16 indexing sequences tested to allow individual lambda Bcl I fragments to be amplified from their respective adaptor pairs. A strategy is proposed enabling a non-cloning approach to the accession, physical mapping and sequencing of genomic DNA. The method could also have application in high-throughput genetic mapping and fingerprinting and should expand the enzyme base for ligation- mediated indexing technology which has previously been limited to the Class-IIS and IP restriction endonucleases.

Full Text

The Full Text of this article is available as a PDF (107.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnold C., Hodgson I. J. Vectorette PCR: a novel approach to genomic walking. PCR Methods Appl. 1991 Aug;1(1):39–42. doi: 10.1101/gr.1.1.39. [DOI] [PubMed] [Google Scholar]
  2. Barnes W. M. PCR amplification of up to 35-kb DNA with high fidelity and high yield from lambda bacteriophage templates. Proc Natl Acad Sci U S A. 1994 Mar 15;91(6):2216–2220. doi: 10.1073/pnas.91.6.2216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cheng S., Fockler C., Barnes W. M., Higuchi R. Effective amplification of long targets from cloned inserts and human genomic DNA. Proc Natl Acad Sci U S A. 1994 Jun 7;91(12):5695–5699. doi: 10.1073/pnas.91.12.5695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ebel S., Lane A. N., Brown T. Very stable mismatch duplexes: structural and thermodynamic studies on tandem G.A mismatches in DNA. Biochemistry. 1992 Dec 8;31(48):12083–12086. doi: 10.1021/bi00163a017. [DOI] [PubMed] [Google Scholar]
  5. Ferrin L. J., Camerini-Otero R. D. Selective cleavage of human DNA: RecA-assisted restriction endonuclease (RARE) cleavage. Science. 1991 Dec 6;254(5037):1494–1497. doi: 10.1126/science.1962209. [DOI] [PubMed] [Google Scholar]
  6. Hagiwara K., Harris C. C. 'Long distance sequencer' method; a novel strategy for large DNA sequencing projects. Nucleic Acids Res. 1996 Jun 15;24(12):2460–2461. doi: 10.1093/nar/24.12.2460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hudson T. J., Stein L. D., Gerety S. S., Ma J., Castle A. B., Silva J., Slonim D. K., Baptista R., Kruglyak L., Xu S. H. An STS-based map of the human genome. Science. 1995 Dec 22;270(5244):1945–1954. doi: 10.1126/science.270.5244.1945. [DOI] [PubMed] [Google Scholar]
  8. Kato K. RNA fingerprinting by molecular indexing. Nucleic Acids Res. 1996 Jan 15;24(2):394–395. doi: 10.1093/nar/24.2.394. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Liang P., Pardee A. B. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science. 1992 Aug 14;257(5072):967–971. doi: 10.1126/science.1354393. [DOI] [PubMed] [Google Scholar]
  10. Lisitsyn N., Lisitsyn N., Wigler M. Cloning the differences between two complex genomes. Science. 1993 Feb 12;259(5097):946–951. doi: 10.1126/science.8438152. [DOI] [PubMed] [Google Scholar]
  11. Loakes D., Brown D. M., Linde S., Hill F. 3-Nitropyrrole and 5-nitroindole as universal bases in primers for DNA sequencing and PCR. Nucleic Acids Res. 1995 Jul 11;23(13):2361–2366. doi: 10.1093/nar/23.13.2361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Luo J., Bergstrom D. E., Barany F. Improving the fidelity of Thermus thermophilus DNA ligase. Nucleic Acids Res. 1996 Aug 1;24(15):3071–3078. doi: 10.1093/nar/24.15.3071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Roberts R. W., Crothers D. M. Specificity and stringency in DNA triplex formation. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9397–9401. doi: 10.1073/pnas.88.21.9397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Rosenberg M., Przybylska M., Straus D. "RFLP subtraction": a method for making libraries of polymorphic markers. Proc Natl Acad Sci U S A. 1994 Jun 21;91(13):6113–6117. doi: 10.1073/pnas.91.13.6113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Saunders R. D., Glover D. M., Ashburner M., Siden-Kiamos I., Louis C., Monastirioti M., Savakis C., Kafatos F. PCR amplification of DNA microdissected from a single polytene chromosome band: a comparison with conventional microcloning. Nucleic Acids Res. 1989 Nov 25;17(22):9027–9037. doi: 10.1093/nar/17.22.9027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Smith D. R. Ligation-mediated PCR of restriction fragments from large DNA molecules. PCR Methods Appl. 1992 Aug;2(1):21–27. doi: 10.1101/gr.2.1.21. [DOI] [PubMed] [Google Scholar]
  17. Strobel S. A., Dervan P. B. Single-site enzymatic cleavage of yeast genomic DNA mediated by triple helix formation. Nature. 1991 Mar 14;350(6314):172–174. doi: 10.1038/350172a0. [DOI] [PubMed] [Google Scholar]
  18. Szybalski W., Kim S. C., Hasan N., Podhajska A. J. Class-IIS restriction enzymes--a review. Gene. 1991 Apr;100:13–26. doi: 10.1016/0378-1119(91)90345-c. [DOI] [PubMed] [Google Scholar]
  19. Tyagi S., Kramer F. R. Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol. 1996 Mar;14(3):303–308. doi: 10.1038/nbt0396-303. [DOI] [PubMed] [Google Scholar]
  20. Unrau P., Deugau K. V. Non-cloning amplification of specific DNA fragments from whole genomic DNA digests using DNA 'indexers'. Gene. 1994 Aug 5;145(2):163–169. doi: 10.1016/0378-1119(94)90001-9. [DOI] [PubMed] [Google Scholar]
  21. Veselkov A. G., Demidov V. V., Nielson P. E., Frank-Kamenetskii M. D. A new class of genome rare cutters. Nucleic Acids Res. 1996 Jul 1;24(13):2483–2487. doi: 10.1093/nar/24.13.2483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Vos P., Hogers R., Bleeker M., Reijans M., van de Lee T., Hornes M., Frijters A., Pot J., Peleman J., Kuiper M. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 1995 Nov 11;23(21):4407–4414. doi: 10.1093/nar/23.21.4407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Welsh J., Chada K., Dalal S. S., Cheng R., Ralph D., McClelland M. Arbitrarily primed PCR fingerprinting of RNA. Nucleic Acids Res. 1992 Oct 11;20(19):4965–4970. doi: 10.1093/nar/20.19.4965. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES