Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 May 1;25(9):1727–1735. doi: 10.1093/nar/25.9.1727

Chromatin structure and methylation of rat rRNA genes studied by formaldehyde fixation and psoralen cross-linking.

I Stancheva 1, R Lucchini 1, T Koller 1, J M Sogo 1
PMCID: PMC146648  PMID: 9108154

Abstract

By using formaldehyde cross-linking of histones to DNA and gel retardation assays we show that formaldehyde fixation, similar to previously established psoralen photocross-linking, discriminates between nucleosome- packed (inactive) and nucleosome-free (active) fractions of ribosomal RNA genes. By both cross-linking techniques we were able to purify fragments from agarose gels, corresponding to coding, enhancer and promoter sequences of rRNA genes, which were further investigated with respect to DNA methylation. This approach allows us to analyse independently and in detail methylation patterns of active and inactive rRNA gene copies by the combination of Hpa II and Msp I restriction enzymes. We found CpG methylation mainly present in enhancer and promoter regions of inactive rRNA gene copies. The methylation of one single Hpa II site, located in the promoter region, showed particularly strong correlation with the transcriptional activity.

Full Text

The Full Text of this article is available as a PDF (227.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bird A. P., Taggart M. H., Gehring C. A. Methylated and unmethylated ribosomal RNA genes in the mouse. J Mol Biol. 1981 Oct 15;152(1):1–17. doi: 10.1016/0022-2836(81)90092-9. [DOI] [PubMed] [Google Scholar]
  2. Bird A., Taggart M., Macleod D. Loss of rDNA methylation accompanies the onset of ribosomal gene activity in early development of X. laevis. Cell. 1981 Nov;26(3 Pt 1):381–390. doi: 10.1016/0092-8674(81)90207-5. [DOI] [PubMed] [Google Scholar]
  3. Bird A. The essentials of DNA methylation. Cell. 1992 Jul 10;70(1):5–8. doi: 10.1016/0092-8674(92)90526-i. [DOI] [PubMed] [Google Scholar]
  4. Cedar H., Razin A. DNA methylation and development. Biochim Biophys Acta. 1990 May 24;1049(1):1–8. doi: 10.1016/0167-4781(90)90076-e. [DOI] [PubMed] [Google Scholar]
  5. Chikaraishi D. M., Buchanan L., Danna K. J., Harrington C. A. Genomic organization of rat rDNA. Nucleic Acids Res. 1983 Sep 24;11(18):6437–6452. doi: 10.1093/nar/11.18.6437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chomet P. S. Cytosine methylation in gene-silencing mechanisms. Curr Opin Cell Biol. 1991 Jun;3(3):438–443. doi: 10.1016/0955-0674(91)90071-6. [DOI] [PubMed] [Google Scholar]
  7. Conconi A., Widmer R. M., Koller T., Sogo J. M. Two different chromatin structures coexist in ribosomal RNA genes throughout the cell cycle. Cell. 1989 Jun 2;57(5):753–761. doi: 10.1016/0092-8674(89)90790-3. [DOI] [PubMed] [Google Scholar]
  8. Copenhaver G. P., Putnam C. D., Denton M. L., Pikaard C. S. The RNA polymerase I transcription factor UBF is a sequence-tolerant HMG-box protein that can recognize structured nucleic acids. Nucleic Acids Res. 1994 Jul 11;22(13):2651–2657. doi: 10.1093/nar/22.13.2651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dammann R., Lucchini R., Koller T., Sogo J. M. Chromatin structures and transcription of rDNA in yeast Saccharomyces cerevisiae. Nucleic Acids Res. 1993 May 25;21(10):2331–2338. doi: 10.1093/nar/21.10.2331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dammann R., Lucchini R., Koller T., Sogo J. M. Transcription in the yeast rRNA gene locus: distribution of the active gene copies and chromatin structure of their flanking regulatory sequences. Mol Cell Biol. 1995 Oct;15(10):5294–5303. doi: 10.1128/mcb.15.10.5294. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dedon P. C., Soults J. A., Allis C. D., Gorovsky M. A. A simplified formaldehyde fixation and immunoprecipitation technique for studying protein-DNA interactions. Anal Biochem. 1991 Aug 15;197(1):83–90. doi: 10.1016/0003-2697(91)90359-2. [DOI] [PubMed] [Google Scholar]
  12. Dedon P. C., Soults J. A., Allis C. D., Gorovsky M. A. Formaldehyde cross-linking and immunoprecipitation demonstrate developmental changes in H1 association with transcriptionally active genes. Mol Cell Biol. 1991 Mar;11(3):1729–1733. doi: 10.1128/mcb.11.3.1729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Doenecke D. Digestion of chromosomal proteins in formaldehyde treated chromatin. Hoppe Seylers Z Physiol Chem. 1978 Oct;359(10):1343–1352. doi: 10.1515/bchm2.1978.359.2.1343. [DOI] [PubMed] [Google Scholar]
  14. Flavell R. B., O'Dell M., Thompson W. F. Regulation of cytosine methylation in ribosomal DNA and nucleolus organizer expression in wheat. J Mol Biol. 1988 Dec 5;204(3):523–534. doi: 10.1016/0022-2836(88)90352-x. [DOI] [PubMed] [Google Scholar]
  15. Graessmann M., Graessmann A. DNA methylation, chromatin structure and the regulation of gene expression. EXS. 1993;64:404–424. doi: 10.1007/978-3-0348-9118-9_18. [DOI] [PubMed] [Google Scholar]
  16. Haaf T., Hayman D. L., Schmid M. Quantitative determination of rDNA transcription units in vertebrate cells. Exp Cell Res. 1991 Mar;193(1):78–86. doi: 10.1016/0014-4827(91)90540-b. [DOI] [PubMed] [Google Scholar]
  17. Harrington C. A., Chikaraishi D. M. Transcription of spacer sequences flanking the rat 45S ribosomal DNA gene. Mol Cell Biol. 1987 Jan;7(1):314–325. doi: 10.1128/mcb.7.1.314. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hewish D. R., Burgoyne L. A. Chromatin sub-structure. The digestion of chromatin DNA at regularly spaced sites by a nuclear deoxyribonuclease. Biochem Biophys Res Commun. 1973 May 15;52(2):504–510. doi: 10.1016/0006-291x(73)90740-7. [DOI] [PubMed] [Google Scholar]
  19. Jackson V. Studies on histone organization in the nucleosome using formaldehyde as a reversible cross-linking agent. Cell. 1978 Nov;15(3):945–954. doi: 10.1016/0092-8674(78)90278-7. [DOI] [PubMed] [Google Scholar]
  20. Jost J. P., Hofsteenge J. The repressor MDBP-2 is a member of the histone H1 family that binds preferentially in vitro and in vivo to methylated nonspecific DNA sequences. Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9499–9503. doi: 10.1073/pnas.89.20.9499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Jupe E. R., Zimmer E. A. DNaseI-sensitive and undermethylated rDNA is preferentially expressed in a maize hybrid. Plant Mol Biol. 1993 Mar;21(5):805–821. doi: 10.1007/BF00027113. [DOI] [PubMed] [Google Scholar]
  22. Kermekchiev M., Muramatsu M. Presence of an inhibitor of RNA polymerase I mediated transcription in extracts from growth arrested mouse cells. Nucleic Acids Res. 1993 Feb 11;21(3):447–453. doi: 10.1093/nar/21.3.447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kuhn A., Stefanovsky V., Grummt I. The nucleolar transcription activator UBF relieves Ku antigen-mediated repression of mouse ribosomal gene transcription. Nucleic Acids Res. 1993 May 11;21(9):2057–2063. doi: 10.1093/nar/21.9.2057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Labhart P., Banz E., Ness P. J., Parish R. W., Koller T. A structural concept for nucleoli of Dictyostelium discoideum deduced from dissociation studies. Chromosoma. 1984;89(2):111–120. doi: 10.1007/BF00292894. [DOI] [PubMed] [Google Scholar]
  25. Labhart P. Negative and positive effects of CpG-methylation on Xenopus ribosomal gene transcription in vitro. FEBS Lett. 1994 Dec 19;356(2-3):302–306. doi: 10.1016/0014-5793(94)01291-1. [DOI] [PubMed] [Google Scholar]
  26. Lewis J. D., Meehan R. R., Henzel W. J., Maurer-Fogy I., Jeppesen P., Klein F., Bird A. Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA. Cell. 1992 Jun 12;69(6):905–914. doi: 10.1016/0092-8674(92)90610-o. [DOI] [PubMed] [Google Scholar]
  27. Loidl P. Towards an understanding of the biological function of histone acetylation. FEBS Lett. 1988 Jan 25;227(2):91–95. doi: 10.1016/0014-5793(88)80874-3. [DOI] [PubMed] [Google Scholar]
  28. Lucchini R., Pauli U., Braun R., Koller T., Sogo J. M. Structure of the extrachromosomal ribosomal RNA chromatin of Physarum polycephalum. J Mol Biol. 1987 Aug 20;196(4):829–843. doi: 10.1016/0022-2836(87)90408-6. [DOI] [PubMed] [Google Scholar]
  29. Lucchini R., Sogo J. M. Different chromatin structures along the spacers flanking active and inactive Xenopus rRNA genes. Mol Cell Biol. 1992 Oct;12(10):4288–4296. doi: 10.1128/mcb.12.10.4288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Macleod D., Bird A. Transcription in oocytes of highly methylated rDNA from Xenopus laevis sperm. Nature. 1983 Nov 10;306(5939):200–203. doi: 10.1038/306200a0. [DOI] [PubMed] [Google Scholar]
  31. Muscarella D. E., Vogt V. M., Bloom S. E. Characterization of ribosomal RNA synthesis in a gene dosage mutant: the relationship of topoisomerase I and chromatin structure to transcriptional activity. J Cell Biol. 1987 Oct;105(4):1501–1513. doi: 10.1083/jcb.105.4.1501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Nacheva G. A., Guschin D. Y., Preobrazhenskaya O. V., Karpov V. L., Ebralidse K. K., Mirzabekov A. D. Change in the pattern of histone binding to DNA upon transcriptional activation. Cell. 1989 Jul 14;58(1):27–36. doi: 10.1016/0092-8674(89)90399-1. [DOI] [PubMed] [Google Scholar]
  33. Nan X., Tate P., Li E., Bird A. DNA methylation specifies chromosomal localization of MeCP2. Mol Cell Biol. 1996 Jan;16(1):414–421. doi: 10.1128/mcb.16.1.414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Pennock D. G., Reeder R. H. In vitro methylation of HpaII sites in Xenopus laevis rDNA does not affect its transcription in oocytes. Nucleic Acids Res. 1984 Feb 24;12(4):2225–2232. doi: 10.1093/nar/12.4.2225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Reeder R. H. Regulatory elements of the generic ribosomal gene. Curr Opin Cell Biol. 1989 Jun;1(3):466–474. doi: 10.1016/0955-0674(89)90007-0. [DOI] [PubMed] [Google Scholar]
  36. Sardana R., O'Dell M., Flavell R. Correlation between the size of the intergenic regulatory region, the status of cytosine methylation of rRNA genes and nucleolar expression in wheat. Mol Gen Genet. 1993 Jan;236(2-3):155–162. doi: 10.1007/BF00277107. [DOI] [PubMed] [Google Scholar]
  37. Solomon M. J., Larsen P. L., Varshavsky A. Mapping protein-DNA interactions in vivo with formaldehyde: evidence that histone H4 is retained on a highly transcribed gene. Cell. 1988 Jun 17;53(6):937–947. doi: 10.1016/s0092-8674(88)90469-2. [DOI] [PubMed] [Google Scholar]
  38. Solomon M. J., Varshavsky A. Formaldehyde-mediated DNA-protein crosslinking: a probe for in vivo chromatin structures. Proc Natl Acad Sci U S A. 1985 Oct;82(19):6470–6474. doi: 10.1073/pnas.82.19.6470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Yavachev L. P., Georgiev O. I., Braga E. A., Avdonina T. A., Bogomolova A. E., Zhurkin V. B., Nosikov V. V., Hadjiolov A. A. Nucleotide sequence analysis of the spacer regions flanking the rat rRNA transcription unit and identification of repetitive elements. Nucleic Acids Res. 1986 Mar 25;14(6):2799–2810. doi: 10.1093/nar/14.6.2799. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES