Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 May 1;25(9):1788–1794. doi: 10.1093/nar/25.9.1788

Role of the 5.8S rRNA in ribosome translocation.

S Abou Elela 1, R N Nazar 1
PMCID: PMC146658  PMID: 9108162

Abstract

Studies on the inhibition of protein synthesis by specific anti 5.8S rRNA oligonucleotides have suggested that this RNA plays an important role in eukaryotic ribosome function. Mutations in the 5. 8S rRNA can inhibit cell growth and compromise protein synthesis in vitro . Polyribosomes from cells expressing these mutant 5.8S rRNAs are elevated in size and ribosome-associated tRNA. Cell free extracts from these cells also are more sensitive to antibiotics which act on the 60S ribosomal subunit by inhibiting elongation. The extracts are especially sensitive to cycloheximide and diphtheria toxin which act specifically to inhibit translocation. Studies of ribosomal proteins show no reproducible changes in the core proteins, but reveal reduced levels of elongation factors 1 and 2 only in ribosomes which contain large amounts of mutant 5.8S rRNA. Polyribosomes from cells which are severely inhibited, but contain little mutant 5.8S rRNA, do not show the same reductions in the elongation factors, an observation which underlines the specific nature of the change. Taken together the results demonstrate a defined and critical function for the 5.8S rRNA, suggesting that this RNA plays a role in ribosome translocation.

Full Text

The Full Text of this article is available as a PDF (109.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abou Elela S., Good L., Melekhovets Y. F., Nazar R. N. Inhibition of protein synthesis by an efficiently expressed mutation in the yeast 5.8S ribosomal RNA. Nucleic Acids Res. 1994 Feb 25;22(4):686–693. doi: 10.1093/nar/22.4.686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Abou Elela S., Good L., Nazar R. N. An efficiently expressed 5.8S rRNA 'tag' for in vivo studies of yeast rRNA biosynthesis and function. Biochim Biophys Acta. 1995 Jun 9;1262(2-3):164–167. doi: 10.1016/0167-4781(95)00074-q. [DOI] [PubMed] [Google Scholar]
  3. Bodley J. W., Dunlop P. C., VanNess B. G. Diphthamide in elongation factor 2: ADP-ribosylation, purification, and properties. Methods Enzymol. 1984;106:378–387. doi: 10.1016/0076-6879(84)06040-7. [DOI] [PubMed] [Google Scholar]
  4. Eaton M. D. The Purification and Concentration of Diphtheria Toxin: I. Evaluation of Previous Methods; Description of a New Procedure. J Bacteriol. 1936 Apr;31(4):347–366. doi: 10.1128/jb.31.4.347-366.1936. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Geyl D., Böck A., Isono K. An improved method for two-dimensional gel-electrophoresis: analysis of mutationally altered ribosomal proteins of Escherichia coli. Mol Gen Genet. 1981;181(3):309–312. doi: 10.1007/BF00425603. [DOI] [PubMed] [Google Scholar]
  6. Good L., Elela S. A., Nazar R. N. Tetrahymena ribozyme disrupts rRNA processing in yeast. J Biol Chem. 1994 Sep 2;269(35):22169–22172. [PubMed] [Google Scholar]
  7. Good L., Nazar R. N. An improved thermal cycle for two-step PCR-based targeted mutagenesis. Nucleic Acids Res. 1992 Sep 25;20(18):4934–4934. doi: 10.1093/nar/20.18.4934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gorenstein C., Warner J. R. Coordinate regulation of the synthesis of eukaryotic ribosomal proteins. Proc Natl Acad Sci U S A. 1976 May;73(5):1547–1551. doi: 10.1073/pnas.73.5.1547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Huang M. T., Grollman A. P. Mode of action of tylocrebrine: effects on protein and nucleic acid synthesis. Mol Pharmacol. 1972 Sep;8(5):538–550. [PubMed] [Google Scholar]
  10. Kaltschmidt E., Wittmann H. G. Ribosomal proteins. VII. Two-dimensional polyacrylamide gel electrophoresis for fingerprinting of ribosomal proteins. Anal Biochem. 1970 Aug;36(2):401–412. doi: 10.1016/0003-2697(70)90376-3. [DOI] [PubMed] [Google Scholar]
  11. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  12. Lane B. G., Tamaoki T. Studies of the chain termini and alkali-stable dinucleotide sequences in 16 s and 28 s ribosomal RNA from L cells. J Mol Biol. 1967 Jul 28;27(2):335–348. doi: 10.1016/0022-2836(67)90024-1. [DOI] [PubMed] [Google Scholar]
  13. Liu W., Lo A. C., Nazar R. N. Structure of the ribosome-associated 5.8 S ribosomal RNA. J Mol Biol. 1983 Dec 5;171(2):217–224. doi: 10.1016/s0022-2836(83)80354-4. [DOI] [PubMed] [Google Scholar]
  14. Lo A. C., Nazar R. N. Topography of 5.8 S rRNA in rat liver ribosomes. Identification of diethyl pyrocarbonate-reactive sites. J Biol Chem. 1982 Apr 10;257(7):3516–3524. [PubMed] [Google Scholar]
  15. Melekhovets Y. F., Good L., Elela S. A., Nazar R. N. Intragenic processing in yeast rRNA is dependent on the 3' external transcribed spacer. J Mol Biol. 1994 Jun 3;239(2):170–180. doi: 10.1006/jmbi.1994.1361. [DOI] [PubMed] [Google Scholar]
  16. Metspalu A., Toots I., Saarma M., Villems R. The ternary complex consisting of rat liver ribosomal 5 S RNA, 5.8 S RNA and protein L5. FEBS Lett. 1980 Sep 22;119(1):81–84. doi: 10.1016/0014-5793(80)81002-7. [DOI] [PubMed] [Google Scholar]
  17. Miyazaki M., Uritani M., Fujimura K., Yamakatsu H., Kageyama T., Takahashi K. Peptide elongation factor 1 from yeasts: purification and biochemical characterization of peptide elongation factors 1 alpha and 1 beta (gamma) from Saccharomyces carlsbergensis and Schizosaccharomyces pombe. J Biochem. 1988 Mar;103(3):508–521. doi: 10.1093/oxfordjournals.jbchem.a122301. [DOI] [PubMed] [Google Scholar]
  18. Moazed D., Noller H. F. Interaction of tRNA with 23S rRNA in the ribosomal A, P, and E sites. Cell. 1989 May 19;57(4):585–597. doi: 10.1016/0092-8674(89)90128-1. [DOI] [PubMed] [Google Scholar]
  19. Nazar R. N. A 5.8 S rRNA-like sequence in prokaryotic 23 S rRNA. FEBS Lett. 1980 Oct 6;119(2):212–214. doi: 10.1016/0014-5793(80)80254-7. [DOI] [PubMed] [Google Scholar]
  20. Nazar R. N. Evolutionary relationship between eukaryotic 29--32 S nucleolar rRNA precursors and the prokaryotic 23 S rRNA. FEBS Lett. 1982 Jul 5;143(2):161–162. doi: 10.1016/0014-5793(82)80089-6. [DOI] [PubMed] [Google Scholar]
  21. Nazar R. N. The release and reassociation of 5.8 S rRNA with yeast ribosomes. J Biol Chem. 1978 Jul 10;253(13):4505–4507. [PubMed] [Google Scholar]
  22. Nishikawa K., Takemura S. Nucleotide sequence of 5 S RNA from Torulopsis utilis. FEBS Lett. 1974 Mar 15;40(1):106–109. doi: 10.1016/0014-5793(74)80904-x. [DOI] [PubMed] [Google Scholar]
  23. Nolan R. D., Grasmuk H., Drews J. The binding of tritiated elongation factors 1 and 2 to ribosomes from Krebs II mouse ascites tumor cells. Eur J Biochem. 1975 Jan 2;50(2):391–402. doi: 10.1111/j.1432-1033.1975.tb09815.x. [DOI] [PubMed] [Google Scholar]
  24. Noller H. F., Hoffarth V., Zimniak L. Unusual resistance of peptidyl transferase to protein extraction procedures. Science. 1992 Jun 5;256(5062):1416–1419. doi: 10.1126/science.1604315. [DOI] [PubMed] [Google Scholar]
  25. Noller H. F. Ribosomal RNA and translation. Annu Rev Biochem. 1991;60:191–227. doi: 10.1146/annurev.bi.60.070191.001203. [DOI] [PubMed] [Google Scholar]
  26. Okazaki K., Okazaki N., Kume K., Jinno S., Tanaka K., Okayama H. High-frequency transformation method and library transducing vectors for cloning mammalian cDNAs by trans-complementation of Schizosaccharomyces pombe. Nucleic Acids Res. 1990 Nov 25;18(22):6485–6489. doi: 10.1093/nar/18.22.6485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Pene J. J., Knight E., Jr, Darnell J. E., Jr Characterization of a new low molecular weight RNA in HeLa cell ribosomes. J Mol Biol. 1968 May 14;33(3):609–623. doi: 10.1016/0022-2836(68)90309-4. [DOI] [PubMed] [Google Scholar]
  28. Picard B., Wegnez M. Isolation of a 7S particle from Xenopus laevis oocytes: a 5S RNA-protein complex. Proc Natl Acad Sci U S A. 1979 Jan;76(1):241–245. doi: 10.1073/pnas.76.1.241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Piccirilli J. A., McConnell T. S., Zaug A. J., Noller H. F., Cech T. R. Aminoacyl esterase activity of the Tetrahymena ribozyme. Science. 1992 Jun 5;256(5062):1420–1424. doi: 10.1126/science.1604316. [DOI] [PubMed] [Google Scholar]
  30. Prentice H. L. High efficiency transformation of Schizosaccharomyces pombe by electroporation. Nucleic Acids Res. 1992 Feb 11;20(3):621–621. doi: 10.1093/nar/20.3.621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Rodnina M. V., Wintermeyer W. Two tRNA-binding sites in addition to A and P sites on eukaryotic ribosomes. J Mol Biol. 1992 Nov 20;228(2):450–459. doi: 10.1016/0022-2836(92)90834-7. [DOI] [PubMed] [Google Scholar]
  32. Toraño A., Sandoval A., Heredia C. F. Soluble protein factors and ribosomal subunits from yeast. Interactions with aminoacyl-tRNA. Methods Enzymol. 1974;30:254–261. doi: 10.1016/0076-6879(74)30029-8. [DOI] [PubMed] [Google Scholar]
  33. Ulbrich N., Chan Y. L., Huber P. W., Wool I. G. Separate binding sites on rat liver ribosomal protein L6 for 5 S and 5.8 S ribosomal ribonucleic acids and for transfer ribonucleic acids. J Biol Chem. 1982 Oct 10;257(19):11353–11357. [PubMed] [Google Scholar]
  34. Van Ryk D. I., Lee Y., Nazar R. N. Unbalanced ribosome assembly in Saccharomyces cerevisiae expressing mutant 5 S rRNAs. J Biol Chem. 1992 Aug 15;267(23):16177–16181. [PubMed] [Google Scholar]
  35. Walker K., Elela S. A., Nazar R. N. Inhibition of protein synthesis by anti-5.8 S rRNA oligodeoxyribonucleotides. J Biol Chem. 1990 Feb 15;265(5):2428–2430. [PubMed] [Google Scholar]
  36. Weinberg R. A., Penman S. Small molecular weight monodisperse nuclear RNA. J Mol Biol. 1968 Dec;38(3):289–304. doi: 10.1016/0022-2836(68)90387-2. [DOI] [PubMed] [Google Scholar]
  37. Weissbach H., Redfield B., Moon H. M. Further studies on the interactions of elongation factor 1 from animal tissues. Arch Biochem Biophys. 1973 May;156(1):267–275. doi: 10.1016/0003-9861(73)90365-2. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES