Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 May 1;25(9):1701–1708. doi: 10.1093/nar/25.9.1701

Enrichment of oligo(dG).oligo(dC)-containing fragments from human genomic DNA by Mg 2+-dependent triplex affinity capture.

N Nishikawa 1, N Kanda 1, M Oishi 1, R Kiyama 1
PMCID: PMC146659  PMID: 9108150

Abstract

Oligo(dG).oligo(dC)- or short poly(dG).poly(dC)-containing fragments were enriched and cloned by means of Mg2+-dependent triplex affinity capture and subsequent cloning procedures. A library constructed after three cycles of enrichment showed that approximately 80% of the clones in the supercoiled form formed a complex with labeled oligonucleotide (dG)34. However, while the rest of the clones retained the ability to form a complex (type I clones), 90.9% failed to form a complex when they were linearized. This group of DNA was abundant in the genomic DNA, although it showed only approximately 3-fold enrichment by one cycle of affinity capture. This group was further classified into two species (types II and III) based on complex formation ability after phenol extraction. Type II clones retained the complex formation ability after treatment, while the human telomere [(TTAGGG)n] and telomere-like [(TGGAA)n] or [(TGGAG)n] sequences belonging to type III clones did not. Serial deletion experiments and the binding assays using oligonucleotides confirmed that the repetitive units containing T(G)nT ( n = 3-5) tracts or (G)n-motifs (n >/= 3) were the sites of complex formation for type II and III clones. On the other hand, type I clones contained poly(dG).poly(dC) tracts at least 10 nt long, and DNase I-footprinting analysis indicated that these tracts were the sites of complex formation.

Full Text

The Full Text of this article is available as a PDF (236.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beckman J. S., Weber J. L. Survey of human and rat microsatellites. Genomics. 1992 Apr;12(4):627–631. doi: 10.1016/0888-7543(92)90285-z. [DOI] [PubMed] [Google Scholar]
  2. Brahmachari S. K., Meera G., Sarkar P. S., Balagurumoorthy P., Tripathi J., Raghavan S., Shaligram U., Pataskar S. Simple repetitive sequences in the genome: structure and functional significance. Electrophoresis. 1995 Sep;16(9):1705–1714. doi: 10.1002/elps.11501601283. [DOI] [PubMed] [Google Scholar]
  3. Bruford M. W., Wayne R. K. Microsatellites and their application to population genetic studies. Curr Opin Genet Dev. 1993 Dec;3(6):939–943. doi: 10.1016/0959-437x(93)90017-j. [DOI] [PubMed] [Google Scholar]
  4. Burge C., Campbell A. M., Karlin S. Over- and under-representation of short oligonucleotides in DNA sequences. Proc Natl Acad Sci U S A. 1992 Feb 15;89(4):1358–1362. doi: 10.1073/pnas.89.4.1358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dernburg A. F., Broman K. W., Fung J. C., Marshall W. F., Philips J., Agard D. A., Sedat J. W. Perturbation of nuclear architecture by long-distance chromosome interactions. Cell. 1996 May 31;85(5):745–759. doi: 10.1016/s0092-8674(00)81240-4. [DOI] [PubMed] [Google Scholar]
  6. Ellison M. J., Fenton M. J., Ho P. S., Rich A. Long-range interactions of multiple DNA structural transitions within a common topological domain. EMBO J. 1987 May;6(5):1513–1522. doi: 10.1002/j.1460-2075.1987.tb02394.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fishel R., Lescoe M. K., Rao M. R., Copeland N. G., Jenkins N. A., Garber J., Kane M., Kolodner R. The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell. 1993 Dec 3;75(5):1027–1038. doi: 10.1016/0092-8674(93)90546-3. [DOI] [PubMed] [Google Scholar]
  8. Fox K. R. Wrapping of genomic polydA.polydT tracts around nucleosome core particles. Nucleic Acids Res. 1992 Mar 25;20(6):1235–1242. doi: 10.1093/nar/20.6.1235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fry M., Loeb L. A. The fragile X syndrome d(CGG)n nucleotide repeats form a stable tetrahelical structure. Proc Natl Acad Sci U S A. 1994 May 24;91(11):4950–4954. doi: 10.1073/pnas.91.11.4950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gardiner-Garden M., Frommer M. CpG islands in vertebrate genomes. J Mol Biol. 1987 Jul 20;196(2):261–282. doi: 10.1016/0022-2836(87)90689-9. [DOI] [PubMed] [Google Scholar]
  11. Hamada H., Petrino M. G., Kakunaga T. A novel repeated element with Z-DNA-forming potential is widely found in evolutionarily diverse eukaryotic genomes. Proc Natl Acad Sci U S A. 1982 Nov;79(21):6465–6469. doi: 10.1073/pnas.79.21.6465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hearne C. M., Ghosh S., Todd J. A. Microsatellites for linkage analysis of genetic traits. Trends Genet. 1992 Aug;8(8):288–294. doi: 10.1016/0168-9525(92)90256-4. [DOI] [PubMed] [Google Scholar]
  13. Hyrien O. Large inverted duplications in amplified DNA of mammalian cells form hairpins in vitro upon DNA extraction but not in vivo. Nucleic Acids Res. 1989 Dec 11;17(23):9557–9569. doi: 10.1093/nar/17.23.9557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ito T., Smith C. L., Cantor C. R. Sequence-specific DNA purification by triplex affinity capture. Proc Natl Acad Sci U S A. 1992 Jan 15;89(2):495–498. doi: 10.1073/pnas.89.2.495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jin R. Z., Breslauer K. J., Jones R. A., Gaffney B. L. Tetraplex formation of a guanine-containing nonameric DNA fragment. Science. 1990 Oct 26;250(4980):543–546. doi: 10.1126/science.2237404. [DOI] [PubMed] [Google Scholar]
  16. Kang S., Wells R. D. Central non-Pur.Pyr sequences in oligo(dG.dC) tracts and metal ions influence the formation of intramolecular DNA triplex isomers. J Biol Chem. 1992 Oct 15;267(29):20887–20891. [PubMed] [Google Scholar]
  17. Kiyama R., Camerini-Otero R. D. A triplex DNA-binding protein from human cells: purification and characterization. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10450–10454. doi: 10.1073/pnas.88.23.10450. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kiyama R., Nishikawa N., Oishi M. Enrichment of human DNAs that flank poly(dA).poly(dT) tracts by triplex DNA formation. J Mol Biol. 1994 Mar 25;237(2):193–200. doi: 10.1006/jmbi.1994.1221. [DOI] [PubMed] [Google Scholar]
  19. Kiyama R., Oishi M. Protection of DNA sequences by triplex-bridge formation. Nucleic Acids Res. 1995 Feb 11;23(3):452–458. doi: 10.1093/nar/23.3.452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kohwi Y., Kohwi-Shigematsu T. Altered gene expression correlates with DNA structure. Genes Dev. 1991 Dec;5(12B):2547–2554. doi: 10.1101/gad.5.12b.2547. [DOI] [PubMed] [Google Scholar]
  21. Kohwi Y., Kohwi-Shigematsu T. Magnesium ion-dependent triple-helix structure formed by homopurine-homopyrimidine sequences in supercoiled plasmid DNA. Proc Natl Acad Sci U S A. 1988 Jun;85(11):3781–3785. doi: 10.1073/pnas.85.11.3781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kremer E. J., Pritchard M., Lynch M., Yu S., Holman K., Baker E., Warren S. T., Schlessinger D., Sutherland G. R., Richards R. I. Mapping of DNA instability at the fragile X to a trinucleotide repeat sequence p(CCG)n. Science. 1991 Jun 21;252(5013):1711–1714. doi: 10.1126/science.1675488. [DOI] [PubMed] [Google Scholar]
  23. Leach F. S., Nicolaides N. C., Papadopoulos N., Liu B., Jen J., Parsons R., Peltomäki P., Sistonen P., Aaltonen L. A., Nyström-Lahti M. Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer. Cell. 1993 Dec 17;75(6):1215–1225. doi: 10.1016/0092-8674(93)90330-s. [DOI] [PubMed] [Google Scholar]
  24. Lindsay S., Bird A. P. Use of restriction enzymes to detect potential gene sequences in mammalian DNA. 1987 May 28-Jun 3Nature. 327(6120):336–338. doi: 10.1038/327336a0. [DOI] [PubMed] [Google Scholar]
  25. Malkov V. A., Voloshin O. N., Soyfer V. N., Frank-Kamenetskii M. D. Cation and sequence effects on stability of intermolecular pyrimidine-purine-purine triplex. Nucleic Acids Res. 1993 Feb 11;21(3):585–591. doi: 10.1093/nar/21.3.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Martínez-Balbás A., Azorín F. The effect of zinc on the secondary structure of d(GA.TC)n DNA sequences of different length: a model for the formation *H-DNA. Nucleic Acids Res. 1993 Jun 11;21(11):2557–2562. doi: 10.1093/nar/21.11.2557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Maxam A. M., Gilbert W. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 1980;65(1):499–560. doi: 10.1016/s0076-6879(80)65059-9. [DOI] [PubMed] [Google Scholar]
  28. Moyzis R. K., Buckingham J. M., Cram L. S., Dani M., Deaven L. L., Jones M. D., Meyne J., Ratliff R. L., Wu J. R. A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc Natl Acad Sci U S A. 1988 Sep;85(18):6622–6626. doi: 10.1073/pnas.85.18.6622. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Naylor L. H., Clark E. M. d(TG)n.d(CA)n sequences upstream of the rat prolactin gene form Z-DNA and inhibit gene transcription. Nucleic Acids Res. 1990 Mar 25;18(6):1595–1601. doi: 10.1093/nar/18.6.1595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Nickol J. M., Felsenfeld G. DNA conformation at the 5' end of the chicken adult beta-globin gene. Cell. 1983 Dec;35(2 Pt 1):467–477. doi: 10.1016/0092-8674(83)90180-0. [DOI] [PubMed] [Google Scholar]
  31. Nishikawa N., Oishi M., Kiyama R. Construction of a human genomic library of clones containing poly(dG-dA).poly(dT-dC) tracts by Mg(2+)-dependent triplex affinity capture. DNA polymorphism associated with the tracts. J Biol Chem. 1995 Apr 21;270(16):9258–9264. doi: 10.1074/jbc.270.16.9258. [DOI] [PubMed] [Google Scholar]
  32. Richards R. I., Sutherland G. R. Simple repeat DNA is not replicated simply. Nat Genet. 1994 Feb;6(2):114–116. doi: 10.1038/ng0294-114. [DOI] [PubMed] [Google Scholar]
  33. Sen D., Gilbert W. Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis. Nature. 1988 Jul 28;334(6180):364–366. doi: 10.1038/334364a0. [DOI] [PubMed] [Google Scholar]
  34. Struhl K. Naturally occurring poly(dA-dT) sequences are upstream promoter elements for constitutive transcription in yeast. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8419–8423. doi: 10.1073/pnas.82.24.8419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Suda T., Mishima Y., Asakura H., Kominami R. Formation of a parallel-stranded DNA homoduplex by d(GGA) repeat oligonucleotides. Nucleic Acids Res. 1995 Sep 25;23(18):3771–3777. doi: 10.1093/nar/23.18.3771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Sutherland G. R., Richards R. I. Simple tandem DNA repeats and human genetic disease. Proc Natl Acad Sci U S A. 1995 Apr 25;92(9):3636–3641. doi: 10.1073/pnas.92.9.3636. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Tautz D., Renz M. Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res. 1984 May 25;12(10):4127–4138. doi: 10.1093/nar/12.10.4127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Tautz D., Trick M., Dover G. A. Cryptic simplicity in DNA is a major source of genetic variation. Nature. 1986 Aug 14;322(6080):652–656. doi: 10.1038/322652a0. [DOI] [PubMed] [Google Scholar]
  39. Usdin K., Furano A. V. Rat L (long interspersed repeated DNA) elements contain guanine-rich homopurine sequences that induce unpairing of contiguous duplex DNA. Proc Natl Acad Sci U S A. 1988 Jun;85(12):4416–4420. doi: 10.1073/pnas.85.12.4416. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Van der Ploeg L. H., Liu A. Y., Borst P. Structure of the growing telomeres of Trypanosomes. Cell. 1984 Feb;36(2):459–468. doi: 10.1016/0092-8674(84)90239-3. [DOI] [PubMed] [Google Scholar]
  41. Vogt P. Potential genetic functions of tandem repeated DNA sequence blocks in the human genome are based on a highly conserved "chromatin folding code". Hum Genet. 1990 Mar;84(4):301–336. doi: 10.1007/BF00196228. [DOI] [PubMed] [Google Scholar]
  42. Weiler K. S., Wakimoto B. T. Heterochromatin and gene expression in Drosophila. Annu Rev Genet. 1995;29:577–605. doi: 10.1146/annurev.ge.29.120195.003045. [DOI] [PubMed] [Google Scholar]
  43. Woodford K. J., Howell R. M., Usdin K. A novel K(+)-dependent DNA synthesis arrest site in a commonly occurring sequence motif in eukaryotes. J Biol Chem. 1994 Oct 28;269(43):27029–27035. [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES