Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 May 1;25(9):1862–1863. doi: 10.1093/nar/25.9.1862

Rapid selection of aminoacyl-tRNAs based on biotinylation of alpha-NH2 group of charged amino acids.

J Pütz 1, J Wientges 1, M Sissler 1, R Giegé 1, C Florentz 1, A Schwienhorst 1
PMCID: PMC146665  PMID: 9162902

Abstract

A rapid selection procedure to separate low amounts of aminoacylated tRNAs from large pools of inactive variants is described. The procedure involves a three-step protocol. After initial aminoacylation of a tRNA pool, N-hydroxysuccinimide ester chemistry is applied to biotinylate the alpha-NH2 group of the amino acid bound to the 3'-end of a tRNA. The biotin tag is used to capture the derivatized tRNAs on streptavidin-conjugated magnetic beads. Variants bound to the solid phase can be amplified by RT-PCR and transcription, providing tRNAs for subsequent selection rounds.

Full Text

The Full Text of this article is available as a PDF (77.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Friedman S. Acylation of transfer ribonucleic acid with the N-hydroxysuccinimide ester of phenoxyacetic acid. Biochemistry. 1972 Aug 29;11(18):3435–3443. doi: 10.1021/bi00768a017. [DOI] [PubMed] [Google Scholar]
  2. Gold L., Polisky B., Uhlenbeck O., Yarus M. Diversity of oligonucleotide functions. Annu Rev Biochem. 1995;64:763–797. doi: 10.1146/annurev.bi.64.070195.003555. [DOI] [PubMed] [Google Scholar]
  3. Illangasekare M., Sanchez G., Nickles T., Yarus M. Aminoacyl-RNA synthesis catalyzed by an RNA. Science. 1995 Feb 3;267(5198):643–647. doi: 10.1126/science.7530860. [DOI] [PubMed] [Google Scholar]
  4. Kurzchalia T. V., Wiedmann M., Breter H., Zimmermann W., Bauschke E., Rapoport T. A. tRNA-mediated labelling of proteins with biotin. A nonradioactive method for the detection of cell-free translation products. Eur J Biochem. 1988 Mar 15;172(3):663–668. doi: 10.1111/j.1432-1033.1988.tb13940.x. [DOI] [PubMed] [Google Scholar]
  5. Lohse P. A., Szostak J. W. Ribozyme-catalysed amino-acid transfer reactions. Nature. 1996 May 30;381(6581):442–444. doi: 10.1038/381442a0. [DOI] [PubMed] [Google Scholar]
  6. Peterson E. T., Blank J., Sprinzl M., Uhlenbeck O. C. Selection for active E. coli tRNA(Phe) variants from a randomized library using two proteins. EMBO J. 1993 Jul;12(7):2959–2967. doi: 10.1002/j.1460-2075.1993.tb05958.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Pütz J., Puglisi J. D., Florentz C., Giegé R. Identity elements for specific aminoacylation of yeast tRNA(Asp) by cognate aspartyl-tRNA synthetase. Science. 1991 Jun 21;252(5013):1696–1699. doi: 10.1126/science.2047878. [DOI] [PubMed] [Google Scholar]
  8. Ribeiro S., Nock S., Sprinzl M. Purification of aminoacyl-tRNA by affinity chromatography on immobilized Thermus thermophilus EF-Tu.GTP. Anal Biochem. 1995 Jul 1;228(2):330–335. doi: 10.1006/abio.1995.1359. [DOI] [PubMed] [Google Scholar]
  9. Sampson J. R., Saks M. E. Selection of aminoacylated tRNAs from RNA libraries having randomized acceptor stem sequences: using old dogs to perform new tricks. Methods Enzymol. 1996;267:384–410. doi: 10.1016/s0076-6879(96)67024-4. [DOI] [PubMed] [Google Scholar]
  10. Sissler M., Giegé R., Florentz C. Arginine aminoacylation identity is context-dependent and ensured by alternate recognition sets in the anticodon loop of accepting tRNA transcripts. EMBO J. 1996 Sep 16;15(18):5069–5076. [PMC free article] [PubMed] [Google Scholar]
  11. Tuerk C., Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 1990 Aug 3;249(4968):505–510. doi: 10.1126/science.2200121. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES