Abstract
A rapid selection procedure to separate low amounts of aminoacylated tRNAs from large pools of inactive variants is described. The procedure involves a three-step protocol. After initial aminoacylation of a tRNA pool, N-hydroxysuccinimide ester chemistry is applied to biotinylate the alpha-NH2 group of the amino acid bound to the 3'-end of a tRNA. The biotin tag is used to capture the derivatized tRNAs on streptavidin-conjugated magnetic beads. Variants bound to the solid phase can be amplified by RT-PCR and transcription, providing tRNAs for subsequent selection rounds.
Full Text
The Full Text of this article is available as a PDF (77.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Friedman S. Acylation of transfer ribonucleic acid with the N-hydroxysuccinimide ester of phenoxyacetic acid. Biochemistry. 1972 Aug 29;11(18):3435–3443. doi: 10.1021/bi00768a017. [DOI] [PubMed] [Google Scholar]
- Gold L., Polisky B., Uhlenbeck O., Yarus M. Diversity of oligonucleotide functions. Annu Rev Biochem. 1995;64:763–797. doi: 10.1146/annurev.bi.64.070195.003555. [DOI] [PubMed] [Google Scholar]
- Illangasekare M., Sanchez G., Nickles T., Yarus M. Aminoacyl-RNA synthesis catalyzed by an RNA. Science. 1995 Feb 3;267(5198):643–647. doi: 10.1126/science.7530860. [DOI] [PubMed] [Google Scholar]
- Kurzchalia T. V., Wiedmann M., Breter H., Zimmermann W., Bauschke E., Rapoport T. A. tRNA-mediated labelling of proteins with biotin. A nonradioactive method for the detection of cell-free translation products. Eur J Biochem. 1988 Mar 15;172(3):663–668. doi: 10.1111/j.1432-1033.1988.tb13940.x. [DOI] [PubMed] [Google Scholar]
- Lohse P. A., Szostak J. W. Ribozyme-catalysed amino-acid transfer reactions. Nature. 1996 May 30;381(6581):442–444. doi: 10.1038/381442a0. [DOI] [PubMed] [Google Scholar]
- Peterson E. T., Blank J., Sprinzl M., Uhlenbeck O. C. Selection for active E. coli tRNA(Phe) variants from a randomized library using two proteins. EMBO J. 1993 Jul;12(7):2959–2967. doi: 10.1002/j.1460-2075.1993.tb05958.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pütz J., Puglisi J. D., Florentz C., Giegé R. Identity elements for specific aminoacylation of yeast tRNA(Asp) by cognate aspartyl-tRNA synthetase. Science. 1991 Jun 21;252(5013):1696–1699. doi: 10.1126/science.2047878. [DOI] [PubMed] [Google Scholar]
- Ribeiro S., Nock S., Sprinzl M. Purification of aminoacyl-tRNA by affinity chromatography on immobilized Thermus thermophilus EF-Tu.GTP. Anal Biochem. 1995 Jul 1;228(2):330–335. doi: 10.1006/abio.1995.1359. [DOI] [PubMed] [Google Scholar]
- Sampson J. R., Saks M. E. Selection of aminoacylated tRNAs from RNA libraries having randomized acceptor stem sequences: using old dogs to perform new tricks. Methods Enzymol. 1996;267:384–410. doi: 10.1016/s0076-6879(96)67024-4. [DOI] [PubMed] [Google Scholar]
- Sissler M., Giegé R., Florentz C. Arginine aminoacylation identity is context-dependent and ensured by alternate recognition sets in the anticodon loop of accepting tRNA transcripts. EMBO J. 1996 Sep 16;15(18):5069–5076. [PMC free article] [PubMed] [Google Scholar]
- Tuerk C., Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 1990 Aug 3;249(4968):505–510. doi: 10.1126/science.2200121. [DOI] [PubMed] [Google Scholar]