Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1997 May 15;25(10):1965–1974. doi: 10.1093/nar/25.10.1965

Investigation of the formation and intracellular stability of purine.(purine/pyrimidine) triplexes.

A Debin 1, C Malvy 1, F Svinarchuk 1
PMCID: PMC146673  PMID: 9115364

Abstract

In a previous work we showed that a short triple helix-forming oligonucleotide (TFO) targeted to the murine c-pim-1 proto-oncogene promoter gives a very stable triple helix under physiological conditions in vitro . Moreover, this triplex was stable inside cells when preformed in vitro . However, we failed to detect triplex formation for this sequence inside cells in DMS footprinting studies. In the present work, in order to determine whether our previous in vivo results are limited to this particular short triplex or can be generalized to other purine.(purine/pyrimidine) triplexes, we have tested three other DNA targets already described in the literature. All these purine.(purine/pyrimidine) triplexes are specific and stable at high temperature in vitro . In vivo studies have shown that the preformed triplexes are stable inside cells for at least 3 days. This clearly demonstrates that intracellular conditions are favourable for the existence of purine. (purine/pyrimidine) triplexes. The triplexes can also be formed in nuclei. However, for all the sequences tested, we were unable to detect any triple helix formation in vivo in intact cells by DMS footprinting. Our results show that neither (i) chromatinization of the DNA target, (ii) intracellular K+concentration nor (iii) cytoplasmic versus nuclear separation of the TFO and DNA target are responsible for the intracellular arrest of triplex formation. We suggest the existence of a cellular mechanism, based on a compartmentalization of TFOs and/or TFO trapping, which separates oligonucleotides from the DNA target. Further work is needed to find oligonucleotide derivatives and means for their delivery to overcome the problem of triplex formation inside cells.

Full Text

The Full Text of this article is available as a PDF (287.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balboa M. A., Insel P. A. Nuclear phospholipase D in Madin-Darby canine kidney cells. Guanosine 5'-O-(thiotriphosphate)-stimulated activation is mediated by RhoA and is downstream of protein kinase C. J Biol Chem. 1995 Dec 15;270(50):29843–29847. doi: 10.1074/jbc.270.50.29843. [DOI] [PubMed] [Google Scholar]
  2. Bazile D., Mir L. M., Paoletti C. Voltage-dependent introduction of a d[alpha]octothymidylate into electropermeabilized cells. Biochem Biophys Res Commun. 1989 Mar 15;159(2):633–639. doi: 10.1016/0006-291x(89)90041-7. [DOI] [PubMed] [Google Scholar]
  3. Beal P. A., Dervan P. B. Second structural motif for recognition of DNA by oligonucleotide-directed triple-helix formation. Science. 1991 Mar 15;251(4999):1360–1363. doi: 10.1126/science.2003222. [DOI] [PubMed] [Google Scholar]
  4. Bergan R., Connell Y., Fahmy B., Neckers L. Electroporation enhances c-myc antisense oligodeoxynucleotide efficacy. Nucleic Acids Res. 1993 Jul 25;21(15):3567–3573. doi: 10.1093/nar/21.15.3567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Birg F., Praseuth D., Zerial A., Thuong N. T., Asseline U., Le Doan T., Hélène C. Inhibition of simian virus 40 DNA replication in CV-1 cells by an oligodeoxynucleotide covalently linked to an intercalating agent. Nucleic Acids Res. 1990 May 25;18(10):2901–2908. doi: 10.1093/nar/18.10.2901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cereghini S., Yaniv M. Assembly of transfected DNA into chromatin: structural changes in the origin-promoter-enhancer region upon replication. EMBO J. 1984 Jun;3(6):1243–1253. doi: 10.1002/j.1460-2075.1984.tb01959.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cooney M., Czernuszewicz G., Postel E. H., Flint S. J., Hogan M. E. Site-specific oligonucleotide binding represses transcription of the human c-myc gene in vitro. Science. 1988 Jul 22;241(4864):456–459. doi: 10.1126/science.3293213. [DOI] [PubMed] [Google Scholar]
  8. Dowty M. E., Williams P., Zhang G., Hagstrom J. E., Wolff J. A. Plasmid DNA entry into postmitotic nuclei of primary rat myotubes. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4572–4576. doi: 10.1073/pnas.92.10.4572. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fisher T. L., Terhorst T., Cao X., Wagner R. W. Intracellular disposition and metabolism of fluorescently-labeled unmodified and modified oligonucleotides microinjected into mammalian cells. Nucleic Acids Res. 1993 Aug 11;21(16):3857–3865. doi: 10.1093/nar/21.16.3857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Frank-Kamenetskii M. D., Mirkin S. M. Triplex DNA structures. Annu Rev Biochem. 1995;64:65–95. doi: 10.1146/annurev.bi.64.070195.000433. [DOI] [PubMed] [Google Scholar]
  11. Grigoriev M., Praseuth D., Guieysse A. L., Robin P., Thuong N. T., Hélène C., Harel-Bellan A. Inhibition of gene expression by triple helix-directed DNA cross-linking at specific sites. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3501–3505. doi: 10.1073/pnas.90.8.3501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Grigoriev M., Praseuth D., Robin P., Hemar A., Saison-Behmoaras T., Dautry-Varsat A., Thuong N. T., Hélène C., Harel-Bellan A. A triple helix-forming oligonucleotide-intercalator conjugate acts as a transcriptional repressor via inhibition of NF kappa B binding to interleukin-2 receptor alpha-regulatory sequence. J Biol Chem. 1992 Feb 15;267(5):3389–3395. [PubMed] [Google Scholar]
  13. Guieysse A. L., Praseuth D., Grigoriev M., Harel-Bellan A., Hélène C. Detection of covalent triplex within human cells. Nucleic Acids Res. 1996 Nov 1;24(21):4210–4216. doi: 10.1093/nar/24.21.4210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Iwanaga T., Ferriola P. C. Cellular uptake of phosphorothioate oligodeoxynucleotides is negatively affected by cell density in a transformed rat tracheal epithelial cell line: implication for antisense approaches. Biochem Biophys Res Commun. 1993 Mar 31;191(3):1152–1157. doi: 10.1006/bbrc.1993.1337. [DOI] [PubMed] [Google Scholar]
  15. Jeong S., Stein A. Micrococcal nuclease digestion of nuclei reveals extended nucleosome ladders having anomalous DNA lengths for chromatin assembled on non-replicating plasmids in transfected cells. Nucleic Acids Res. 1994 Feb 11;22(3):370–375. doi: 10.1093/nar/22.3.370. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Leonetti J. P., Mechti N., Degols G., Gagnor C., Lebleu B. Intracellular distribution of microinjected antisense oligonucleotides. Proc Natl Acad Sci U S A. 1991 Apr 1;88(7):2702–2706. doi: 10.1073/pnas.88.7.2702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Malkov V. A., Voloshin O. N., Soyfer V. N., Frank-Kamenetskii M. D. Cation and sequence effects on stability of intermolecular pyrimidine-purine-purine triplex. Nucleic Acids Res. 1993 Feb 11;21(3):585–591. doi: 10.1093/nar/21.3.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. McShan W. M., Rossen R. D., Laughter A. H., Trial J., Kessler D. J., Zendegui J. G., Hogan M. E., Orson F. M. Inhibition of transcription of HIV-1 in infected human cells by oligodeoxynucleotides designed to form DNA triple helices. J Biol Chem. 1992 Mar 15;267(8):5712–5721. [PubMed] [Google Scholar]
  19. Mergny J. L., Duval-Valentin G., Nguyen C. H., Perrouault L., Faucon B., Rougée M., Montenay-Garestier T., Bisagni E., Hélène C. Triple helix-specific ligands. Science. 1992 Jun 19;256(5064):1681–1684. doi: 10.1126/science.256.5064.1681. [DOI] [PubMed] [Google Scholar]
  20. Mirzayans R., Aubin R. A., Paterson M. C. Differential expression and stability of foreign genes introduced into human fibroblasts by nuclear versus cytoplasmic microinjection. Mutat Res. 1992 Feb;281(2):115–122. doi: 10.1016/0165-7992(92)90045-j. [DOI] [PubMed] [Google Scholar]
  21. Musso M., Wang J. C., Van Dyke M. W. In vivo persistence of DNA triple helices containing psoralen-conjugated oligodeoxyribonucleotides. Nucleic Acids Res. 1996 Dec 15;24(24):4924–4932. doi: 10.1093/nar/24.24.4924. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Noonberg S. B., François J. C., Garestier T., Hélène C. Effect of competing self-structure on triplex formation with purine-rich oligodeoxynucleotides containing GA repeats. Nucleic Acids Res. 1995 Jun 11;23(11):1956–1963. doi: 10.1093/nar/23.11.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Olivas W. M., Maher L. J., 3rd Competitive triplex/quadruplex equilibria involving guanine-rich oligonucleotides. Biochemistry. 1995 Jan 10;34(1):278–284. doi: 10.1021/bi00001a034. [DOI] [PubMed] [Google Scholar]
  24. Orson F. M., Thomas D. W., McShan W. M., Kessler D. J., Hogan M. E. Oligonucleotide inhibition of IL2R alpha mRNA transcription by promoter region collinear triplex formation in lymphocytes. Nucleic Acids Res. 1991 Jun 25;19(12):3435–3441. doi: 10.1093/nar/19.12.3435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Postel E. H., Flint S. J., Kessler D. J., Hogan M. E. Evidence that a triplex-forming oligodeoxyribonucleotide binds to the c-myc promoter in HeLa cells, thereby reducing c-myc mRNA levels. Proc Natl Acad Sci U S A. 1991 Sep 15;88(18):8227–8231. doi: 10.1073/pnas.88.18.8227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Rando R. F., DePaolis L., Durland R. H., Jayaraman K., Kessler D. J., Hogan M. E. Inhibition of T7 and T3 RNA polymerase directed transcription elongation in vitro. Nucleic Acids Res. 1994 Feb 25;22(4):678–685. doi: 10.1093/nar/22.4.678. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Reeves R., Gorman C. M., Howard B. Minichromosome assembly of non-integrated plasmid DNA transfected into mammalian cells. Nucleic Acids Res. 1985 May 24;13(10):3599–3615. doi: 10.1093/nar/13.10.3599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Rocancourt D., Bonnerot C., Jouin H., Emerman M., Nicolas J. F. Activation of a beta-galactosidase recombinant provirus: application to titration of human immunodeficiency virus (HIV) and HIV-infected cells. J Virol. 1990 Jun;64(6):2660–2668. doi: 10.1128/jvi.64.6.2660-2668.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Roy C. Inhibition of gene transcription by purine rich triplex forming oligodeoxyribonucleotides. Nucleic Acids Res. 1993 Jun 25;21(12):2845–2852. doi: 10.1093/nar/21.12.2845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Stein C. A., Cheng Y. C. Antisense oligonucleotides as therapeutic agents--is the bullet really magical? Science. 1993 Aug 20;261(5124):1004–1012. doi: 10.1126/science.8351515. [DOI] [PubMed] [Google Scholar]
  31. Suda T., Mishima Y., Asakura H., Kominami R. Formation of a parallel-stranded DNA homoduplex by d(GGA) repeat oligonucleotides. Nucleic Acids Res. 1995 Sep 25;23(18):3771–3777. doi: 10.1093/nar/23.18.3771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Svinarchuk F., Bertrand J. R., Malvy C. A short purine oligonucleotide forms a highly stable triple helix with the promoter of the murine c-pim-1 proto-oncogene. Nucleic Acids Res. 1994 Sep 11;22(18):3742–3747. doi: 10.1093/nar/22.18.3742. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Svinarchuk F., Cherny D., Debin A., Delain E., Malvy C. A new approach to overcome potassium-mediated inhibition of triplex formation. Nucleic Acids Res. 1996 Oct 1;24(19):3858–3865. doi: 10.1093/nar/24.19.3858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Svinarchuk F., Debin A., Bertrand J. R., Malvy C. Investigation of the intracellular stability and formation of a triple helix formed with a short purine oligonucleotide targeted to the murine c-pim-1 proto-oncogene promotor. Nucleic Acids Res. 1996 Jan 15;24(2):295–302. doi: 10.1093/nar/24.2.295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Svinarchuk F., Paoletti J., Malvy C. An unusually stable purine(purine-pyrimidine) short triplex. The third strand stabilizes double-stranded DNA. J Biol Chem. 1995 Jun 9;270(23):14068–14071. doi: 10.1074/jbc.270.23.14068. [DOI] [PubMed] [Google Scholar]
  36. Tonkinson J. L., Stein C. A. Patterns of intracellular compartmentalization, trafficking and acidification of 5'-fluorescein labeled phosphodiester and phosphorothioate oligodeoxynucleotides in HL60 cells. Nucleic Acids Res. 1994 Oct 11;22(20):4268–4275. doi: 10.1093/nar/22.20.4268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Wang G., Levy D. D., Seidman M. M., Glazer P. M. Targeted mutagenesis in mammalian cells mediated by intracellular triple helix formation. Mol Cell Biol. 1995 Mar;15(3):1759–1768. doi: 10.1128/mcb.15.3.1759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Wang G., Seidman M. M., Glazer P. M. Mutagenesis in mammalian cells induced by triple helix formation and transcription-coupled repair. Science. 1996 Feb 9;271(5250):802–805. doi: 10.1126/science.271.5250.802. [DOI] [PubMed] [Google Scholar]
  39. Westin L., Blomquist P., Milligan J. F., Wrange O. Triple helix DNA alters nucleosomal histone-DNA interactions and acts as a nucleosome barrier. Nucleic Acids Res. 1995 Jun 25;23(12):2184–2191. doi: 10.1093/nar/23.12.2184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Young S. L., Krawczyk S. H., Matteucci M. D., Toole J. J. Triple helix formation inhibits transcription elongation in vitro. Proc Natl Acad Sci U S A. 1991 Nov 15;88(22):10023–10026. doi: 10.1073/pnas.88.22.10023. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES